Skip to main content
Top

18-03-2024 | REVIEW

Early Efforts on Elastocaloric Cooling (2002 to 2014)

Author: Jun Cui

Published in: Shape Memory and Superelasticity

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Common refrigerants used in vapor compression-based cooling technology, such as R410A, R22, and R134A, are greenhouse gases with warming potential exceeding 1400 times that of CO2. While cooling helps us survive the hot weather, these refrigerants also make the weather hotter. Thus, there is an urgent need for a cost-effective, highly efficient, and environmentally friendly cooling technology that can break this vicious cycle. Elastocaloric cooling is an emerging technology with the potential to meet this need. Although the elastocaloric effect has been known for several decades, it was only 10 years ago that researchers began to develop it for practical cooling. This article reviews the early work and critical events that led to the development of the first elastocaloric prototype. The major research areas to be reviewed include (1) the search for a low-hysteresis shape memory alloy, (2) investigations into the stress-biased magnetocaloric effect, (3) the demonstration of the elastocaloric effect, and (4) fatigue studies of the elastocaloric effect under compression.
Literature
2.
go back to reference Hugenroth JJ, (2002) Solid phase change refrigeration. U.S. Patent 6,367,281 Hugenroth JJ, (2002) Solid phase change refrigeration. U.S. Patent 6,367,281
3.
go back to reference Manosa L, Planes A, Vives E, Bonnot E, Romero R (2009) The use of shape-memory alloys for mechanical refrigeration. Funct Mater Lett 2(02):73–78CrossRef Manosa L, Planes A, Vives E, Bonnot E, Romero R (2009) The use of shape-memory alloys for mechanical refrigeration. Funct Mater Lett 2(02):73–78CrossRef
4.
go back to reference Holtz RL, Sadananda K, Imam MA (1999) Fatigue thresholds of Ni–Ti alloy near the shape memory transition temperature. Int J Fatigue 21:S137–S145CrossRef Holtz RL, Sadananda K, Imam MA (1999) Fatigue thresholds of Ni–Ti alloy near the shape memory transition temperature. Int J Fatigue 21:S137–S145CrossRef
5.
go back to reference McKelvey AL, Ritchie RO (2001) Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metall and Mater Trans A 32:731–743ADSCrossRef McKelvey AL, Ritchie RO (2001) Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metall and Mater Trans A 32:731–743ADSCrossRef
6.
go back to reference Miyazaki S, Mizukoshi K, Ueki T, Sakuma T, Liu Y (1999) Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Mater Sci Eng, A 273:658–663CrossRef Miyazaki S, Mizukoshi K, Ueki T, Sakuma T, Liu Y (1999) Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Mater Sci Eng, A 273:658–663CrossRef
7.
go back to reference Miyazaki S, Ohmi Y, Otsuka K, Suzuki Y (1982) Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys. Le J de Phys Colloq 43(C4):C4-255 Miyazaki S, Ohmi Y, Otsuka K, Suzuki Y (1982) Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys. Le J de Phys Colloq 43(C4):C4-255
8.
go back to reference Gall K, Yang N, Sehitoglu H, Chumlyakov YI (2001) Fracture of precipitated NiTi shape memory alloys. Int J Fract 109:189–207CrossRef Gall K, Yang N, Sehitoglu H, Chumlyakov YI (2001) Fracture of precipitated NiTi shape memory alloys. Int J Fract 109:189–207CrossRef
10.
go back to reference Cui J, Chu YS, Famodu OO, Furuya Y, Hattrick-Simpers J, James RD, Ludwig A, Thienhaus S, Wuttig M, Zhang Z, Takeuchi I (2006) Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat Mater 5(4):286–290ADSCrossRefPubMed Cui J, Chu YS, Famodu OO, Furuya Y, Hattrick-Simpers J, James RD, Ludwig A, Thienhaus S, Wuttig M, Zhang Z, Takeuchi I (2006) Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat Mater 5(4):286–290ADSCrossRefPubMed
11.
go back to reference Johnson DD, Pinski FJ (1993) Inclusion of charge correlations in calculations of the energetics and electronic structure for random substitutional alloys. Phys Rev B 48(16):11553ADSCrossRef Johnson DD, Pinski FJ (1993) Inclusion of charge correlations in calculations of the energetics and electronic structure for random substitutional alloys. Phys Rev B 48(16):11553ADSCrossRef
12.
go back to reference Private communication with Dr. Duane Johnson at Iowa State University, (2023) Private communication with Dr. Duane Johnson at Iowa State University, (2023)
13.
go back to reference Zhang Z, James RD, Müller S (2009) Energy barriers and hysteresis in martensitic phase transformations. Acta Mater 57(15):4332–4352ADSCrossRef Zhang Z, James RD, Müller S (2009) Energy barriers and hysteresis in martensitic phase transformations. Acta Mater 57(15):4332–4352ADSCrossRef
14.
go back to reference Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y, Thienhaus S, Maaß B, Rahim M, Frenzel J, Brunken H, Chu YS (2010) Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv Func Mater 20(12):1917–1923CrossRef Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y, Thienhaus S, Maaß B, Rahim M, Frenzel J, Brunken H, Chu YS (2010) Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv Func Mater 20(12):1917–1923CrossRef
16.
go back to reference Gschneidner KA, Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68(6):1479ADSCrossRef Gschneidner KA, Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68(6):1479ADSCrossRef
17.
go back to reference Pecharsky VK, Gschneidner KA (1997) Giant magnetocaloric effect in Gd 5 (Si 2 Ge 2). Phys Rev Lett 78(23):4494ADSCrossRef Pecharsky VK, Gschneidner KA (1997) Giant magnetocaloric effect in Gd 5 (Si 2 Ge 2). Phys Rev Lett 78(23):4494ADSCrossRef
18.
go back to reference Hu FX, Shen BG, Sun JR (2000) Magnetic entropy change in Ni 51.5 Mn 22.7 Ga 25.8 alloy. Appl Phys Lett 76(23):3460–3462ADSCrossRef Hu FX, Shen BG, Sun JR (2000) Magnetic entropy change in Ni 51.5 Mn 22.7 Ga 25.8 alloy. Appl Phys Lett 76(23):3460–3462ADSCrossRef
19.
go back to reference Marcos J, Planes A, Mañosa L, Casanova F, Batlle X, Labarta A, Martínez B (2002) Magnetic field induced entropy change and magnetoelasticity in Ni-Mn-Ga alloys. Phys Rev B 66(22):224413ADSCrossRef Marcos J, Planes A, Mañosa L, Casanova F, Batlle X, Labarta A, Martínez B (2002) Magnetic field induced entropy change and magnetoelasticity in Ni-Mn-Ga alloys. Phys Rev B 66(22):224413ADSCrossRef
20.
go back to reference Pareti L, Solzi M, Albertini F, Paoluzi A (2003) Giant entropy change at the co-occurrence of structural and magnetic transitions in the Ni Mn Ga Heusler alloy. Eur Phys J B-Condens Matter Complex Syst 32:303–307CrossRef Pareti L, Solzi M, Albertini F, Paoluzi A (2003) Giant entropy change at the co-occurrence of structural and magnetic transitions in the Ni Mn Ga Heusler alloy. Eur Phys J B-Condens Matter Complex Syst 32:303–307CrossRef
21.
go back to reference Zhou X, Li W, Kunkel HP, Williams G (2004) A criterion for enhancing the giant magnetocaloric effect:(Ni–Mn–Ga)—a promising new system for magnetic refrigeration. J Phys: Condens Matter 16(6):L39ADS Zhou X, Li W, Kunkel HP, Williams G (2004) A criterion for enhancing the giant magnetocaloric effect:(Ni–Mn–Ga)—a promising new system for magnetic refrigeration. J Phys: Condens Matter 16(6):L39ADS
24.
go back to reference Du J, Zheng Q, Ren WJ, Feng WJ, Liu XG, Zhang ZD (2007) Magnetocaloric effect and magnetic-field-induced shape recovery effect at room temperature in ferromagnetic Heusler alloy Ni–Mn–Sb. J Phys D Appl Phys 40(18):5523ADSCrossRef Du J, Zheng Q, Ren WJ, Feng WJ, Liu XG, Zhang ZD (2007) Magnetocaloric effect and magnetic-field-induced shape recovery effect at room temperature in ferromagnetic Heusler alloy Ni–Mn–Sb. J Phys D Appl Phys 40(18):5523ADSCrossRef
25.
go back to reference Tegus O, Brück E, Zhang L, Buschow KHJ, De Boer FR (2002) Magnetic-phase transitions and magnetocaloric effects. Physica B 319(1–4):174–192ADSCrossRef Tegus O, Brück E, Zhang L, Buschow KHJ, De Boer FR (2002) Magnetic-phase transitions and magnetocaloric effects. Physica B 319(1–4):174–192ADSCrossRef
26.
go back to reference Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2005) Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater 4(6):450–454ADSCrossRefPubMed Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2005) Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater 4(6):450–454ADSCrossRefPubMed
27.
go back to reference Cui J, Lemmon J, Shield T, Wuttig M, GE Global Research Technical Report, 2008GRC693, Oct 2008 Cui J, Lemmon J, Shield T, Wuttig M, GE Global Research Technical Report, 2008GRC693, Oct 2008
28.
go back to reference Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit JL, Aksoy S, Acet M (2010) Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat Mater 9(6):478–481ADSCrossRefPubMed Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit JL, Aksoy S, Acet M (2010) Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat Mater 9(6):478–481ADSCrossRefPubMed
29.
go back to reference Castillo-Villa PO, Soto-Parra DE, Matutes-Aquino JA, Ochoa-Gamboa RA, Planes A, Mañosa L, González-Alonso D, Stipcich M, Romero R, Ríos-Jara D, Flores-Zúñiga H (2011) Caloric effects induced by magnetic and mechanical fields in a Ni50Mn25−xGa25Cox magnetic shape memory alloy. Phys Rev B 83(17):174109ADSCrossRef Castillo-Villa PO, Soto-Parra DE, Matutes-Aquino JA, Ochoa-Gamboa RA, Planes A, Mañosa L, González-Alonso D, Stipcich M, Romero R, Ríos-Jara D, Flores-Zúñiga H (2011) Caloric effects induced by magnetic and mechanical fields in a Ni50Mn25−xGa25Cox magnetic shape memory alloy. Phys Rev B 83(17):174109ADSCrossRef
30.
go back to reference Takeuchi I, and Cui J, (2014) ARPAe Annual Project Report, Compressive elastocaloric cooling, Project # DE-AR0000131 Takeuchi I, and Cui J, (2014) ARPAe Annual Project Report, Compressive elastocaloric cooling, Project # DE-AR0000131
Metadata
Title
Early Efforts on Elastocaloric Cooling (2002 to 2014)
Author
Jun Cui
Publication date
18-03-2024
Publisher
Springer US
Published in
Shape Memory and Superelasticity
Print ISSN: 2199-384X
Electronic ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-024-00475-z

Premium Partners