Skip to main content
Top
Published in: Neural Processing Letters 1/2022

10-11-2021

EarNet: Biometric Embeddings for End to End Person Authentication System Using Transient Evoked Otoacoustic Emission Signals

Authors: Akshath Varugeese, A. Shahina, Khadar Nawas, A. Nayeemulla Khan

Published in: Neural Processing Letters | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Transient Evoked Otoacoustic Emissions (TEOAE) are a class of oto-acoustic emissions that are generated by the cochlea in response to an external stimulus. The TEOAE signals exhibit characteristics unique to an individual, and are therefore considered as a potential biometric modality. Unlike conventional modalities, TEOAE is immune to replay and falsification attacks due to its implicit liveliness detection feature. In this paper, we propose an efficient deep neural network architecture, EarNet, to learn the appropriate filters for non-stationary (TEOAE) signals, which can reveal individual uniqueness and long- term reproducibility. EarNet is inspired by Google’s FaceNet. Furthermore, the embeddings generated by EarNet, in the Euclidean space, are such that they reduce intra-subject variability while capturing inter-subject variability, as visualized using t-SNE. The embeddings from EarNet are used for identification and verification tasks. The K-Nearest Neighbour classifier gives identification accuracies of 99.21% and 99.42% for the left and right ear, respectively, which are highest among the machine learning algorithms explored in this work. The verification using Pearson correlation on the embeddings performs with an EER of 0.581% and 0.057% for the left and right ear, respectively, scoring better than all other techniques. Fusion strategy yields an improved identification accuracy of 99.92%. The embeddings generalize well on subjects that are not part of the training, and hence EarNet is scalable on any new larger dataset.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kemp D (1978) Acoustic resonances originating inside the cochlea. In: British society of audiology short papers meeting, pp 290–294 Kemp D (1978) Acoustic resonances originating inside the cochlea. In: British society of audiology short papers meeting, pp 290–294
2.
go back to reference Martin Watkin PM (1996) Neonatal otoacoustic emission screening and the identification of deafness. Arch Dis Child Fetal Neonatal Ed 74:F16–F25CrossRef Martin Watkin PM (1996) Neonatal otoacoustic emission screening and the identification of deafness. Arch Dis Child Fetal Neonatal Ed 74:F16–F25CrossRef
3.
go back to reference Hall J (2000) Handbook of otoacoustic emissions (a singular audiology text). Singular Publ., Group, San Diego Hall J (2000) Handbook of otoacoustic emissions (a singular audiology text). Singular Publ., Group, San Diego
4.
go back to reference Zimatore G, Giuliani A, Hatzopoulos S, Martini A, Colosimo A (2002) Invariant and subject-dependent features of otoacoustic emissions. In: Proceedings of the 3rd international symposium on medical data analysis, pp 158–166 Zimatore G, Giuliani A, Hatzopoulos S, Martini A, Colosimo A (2002) Invariant and subject-dependent features of otoacoustic emissions. In: Proceedings of the 3rd international symposium on medical data analysis, pp 158–166
5.
go back to reference Hall JW, Baer JE, Chase PA, Schwaber MK (2009) Sex differences in distortion-product and transient-evoked otoacoustic emissions compared. J Acoust Soc Am 125:239–246CrossRef Hall JW, Baer JE, Chase PA, Schwaber MK (2009) Sex differences in distortion-product and transient-evoked otoacoustic emissions compared. J Acoust Soc Am 125:239–246CrossRef
6.
go back to reference Bilger RC, Matthies ML, Hammel DR, Demorest ME (1990) Genetic-implications of gender differences in the prevalence of spontaneous otoacoustic emissions. J Speech Lang Hear Res 33:418–432CrossRef Bilger RC, Matthies ML, Hammel DR, Demorest ME (1990) Genetic-implications of gender differences in the prevalence of spontaneous otoacoustic emissions. J Speech Lang Hear Res 33:418–432CrossRef
7.
go back to reference Whitehead ML, Kamal N, Lonsbury-Martin BL, Martin GK (1993) Spontaneous otoacoustic emissions in different racial groups. Scand Audiol 22:3–10CrossRef Whitehead ML, Kamal N, Lonsbury-Martin BL, Martin GK (1993) Spontaneous otoacoustic emissions in different racial groups. Scand Audiol 22:3–10CrossRef
8.
go back to reference Matsumoto T, Matsumoto H, Yamada K, Hoshino S (2002) Impact of artificial ‘gummy’ fingers on fingerprint systems. Proc SPIE 4677:275–289 Matsumoto T, Matsumoto H, Yamada K, Hoshino S (2002) Impact of artificial ‘gummy’ fingers on fingerprint systems. Proc SPIE 4677:275–289
9.
go back to reference Turk M, Pentland A (1991) Eigenfaces for recognition. J Cognit Neurosci 3:71–86CrossRef Turk M, Pentland A (1991) Eigenfaces for recognition. J Cognit Neurosci 3:71–86CrossRef
10.
go back to reference Gao Y, Leung MKH (2002) Face recognition using line edge map. IEEE Trans Pattern Anal Mach Intell 24:764–779CrossRef Gao Y, Leung MKH (2002) Face recognition using line edge map. IEEE Trans Pattern Anal Mach Intell 24:764–779CrossRef
11.
go back to reference Wiskott L, Fellous J-M, Norbert N, von der Malsburg C (1997) Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell 19:775–779CrossRef Wiskott L, Fellous J-M, Norbert N, von der Malsburg C (1997) Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell 19:775–779CrossRef
13.
go back to reference Gold T, Hearing II (1948) The physiological basis of the action of the cochlea. Proc R Soc Edinb 135:492–490 Gold T, Hearing II (1948) The physiological basis of the action of the cochlea. Proc R Soc Edinb 135:492–490
14.
go back to reference Swabey MA, Beeby SP, Brown AD, Chad JE (2004) Using otoacoustic emissions as a biometric. In: Proceedings of the international conference on biometric authentication (ICBA), pp 600–606 Swabey MA, Beeby SP, Brown AD, Chad JE (2004) Using otoacoustic emissions as a biometric. In: Proceedings of the international conference on biometric authentication (ICBA), pp 600–606
15.
go back to reference Grzanka A, Konopka W, Hatzopoulos S, Zalewski P (2001) TEOAE high resolution time-frequency components and their long term stability. In: Proceedings of the 17th biennial symposium international evoked response audiometry study group (IERASG), p 36 Grzanka A, Konopka W, Hatzopoulos S, Zalewski P (2001) TEOAE high resolution time-frequency components and their long term stability. In: Proceedings of the 17th biennial symposium international evoked response audiometry study group (IERASG), p 36
16.
go back to reference Konopka W, Grzanka A, Zalewski P (2002) Personal long-term reproducibility of the TEOAE time-frequency distributions. Polish J Otolaryngol 56:701–706 Konopka W, Grzanka A, Zalewski P (2002) Personal long-term reproducibility of the TEOAE time-frequency distributions. Polish J Otolaryngol 56:701–706
17.
go back to reference Grabham NJ et al (2013) An evaluation of otoacoustic emissions as a biometric. IEEE Trans Inf Forensics Sec 8:174–183CrossRef Grabham NJ et al (2013) An evaluation of otoacoustic emissions as a biometric. IEEE Trans Inf Forensics Sec 8:174–183CrossRef
18.
go back to reference Prieve BA, Fitzgerald TS, Schulte LE, Kemp DT (1997) Basic characteristics of distortion product otoacoustic emissions in infants and children. J Acoust Soc Am 102:2871–2879CrossRef Prieve BA, Fitzgerald TS, Schulte LE, Kemp DT (1997) Basic characteristics of distortion product otoacoustic emissions in infants and children. J Acoust Soc Am 102:2871–2879CrossRef
20.
go back to reference Marlin J, Olofsson Å, Berninger E (2020) Twin study of neonatal transient-evoked otoacoustic emissions. In: Hearing research, volume 398. ISSN 108108:0378–5955 Marlin J, Olofsson Å, Berninger E (2020) Twin study of neonatal transient-evoked otoacoustic emissions. In: Hearing research, volume 398. ISSN 108108:0378–5955
21.
go back to reference Nura Holdings Pty Ltd (2016) Personalization of auditory stimulus. US Patent 949,753,0B1 Nura Holdings Pty Ltd (2016) Personalization of auditory stimulus. US Patent 949,753,0B1
22.
go back to reference Nura Holdings Pty Ltd (2016) Personalization of auditory stimulus. US Patent 979,467,2B2 Nura Holdings Pty Ltd (2016) Personalization of auditory stimulus. US Patent 979,467,2B2
23.
go back to reference Nura Holdings Pty Ltd (2016) Personalization of auditory stimulus. US Patent 1070,868,0B2 Nura Holdings Pty Ltd (2016) Personalization of auditory stimulus. US Patent 1070,868,0B2
24.
go back to reference Nura Holdings Pty Ltd (2016) Headphones with combined ear-cup and ear-bud. US Patent 1016,534,5B2 Nura Holdings Pty Ltd (2016) Headphones with combined ear-cup and ear-bud. US Patent 1016,534,5B2
25.
go back to reference NYMI Inc (2016) Preauthorized wearable biometric device, system and method for use thereof, US Patent 947,203,3B2 NYMI Inc (2016) Preauthorized wearable biometric device, system and method for use thereof, US Patent 947,203,3B2
26.
go back to reference Swabey MA et al (2009) The biometric potential of transient otoacoustic emissions. Int J Biom 1:349–364 Swabey MA et al (2009) The biometric potential of transient otoacoustic emissions. Int J Biom 1:349–364
27.
go back to reference Chambers P, Grabham NJ, Swabey MA (2011) A comparison of verification in the temporal and cepstrum-transformed domains of transient evoked otoacoustic emissions for biometric identification. Int J Biom 3:246–264 Chambers P, Grabham NJ, Swabey MA (2011) A comparison of verification in the temporal and cepstrum-transformed domains of transient evoked otoacoustic emissions for biometric identification. Int J Biom 3:246–264
28.
go back to reference Gao J, Agrafioti F, Wang S, Hatzinakos D (2012) Transient otoacoustic emissions for biometric recognition. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 2249–2252 Gao J, Agrafioti F, Wang S, Hatzinakos D (2012) Transient otoacoustic emissions for biometric recognition. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 2249–2252
29.
go back to reference Liu Y, Hatzinakos D (2014) Earprint: transient evoked otoacoustic emission for biometrics. IEEE Trans Inf Forensics Secur 9:2291–2300CrossRef Liu Y, Hatzinakos D (2014) Earprint: transient evoked otoacoustic emission for biometrics. IEEE Trans Inf Forensics Secur 9:2291–2300CrossRef
30.
go back to reference Tognola G, Grandori F, Ravazzani P (1998) Wavelet analysis of clickevoked otoacoustic emissions. IEEE Trans Biomed Eng 45:686–697CrossRef Tognola G, Grandori F, Ravazzani P (1998) Wavelet analysis of clickevoked otoacoustic emissions. IEEE Trans Biomed Eng 45:686–697CrossRef
31.
go back to reference Juang B-H, Katagiri S (1992) Discriminative learning for minimum error classification [pattern recognition]. IEEE Trans Signal Process 40:3043–3054CrossRef Juang B-H, Katagiri S (1992) Discriminative learning for minimum error classification [pattern recognition]. IEEE Trans Signal Process 40:3043–3054CrossRef
32.
go back to reference Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH
33.
go back to reference Weinberger KQ, Blitzer J, Saul LK (2005) Distance metric learning for large margin nearest neighbor classification. In: Proceedings of the 18th international conference on neural information processing systems, NIPS’05, pp 1473–1480 Weinberger KQ, Blitzer J, Saul LK (2005) Distance metric learning for large margin nearest neighbor classification. In: Proceedings of the 18th international conference on neural information processing systems, NIPS’05, pp 1473–1480
35.
go back to reference Eyben F, Wöllmer M, Schuller BW (2010) Opensmile: the Munich versatile and fast open-source audio feature extractor. ACM Multimed 1459–1462 Eyben F, Wöllmer M, Schuller BW (2010) Opensmile: the Munich versatile and fast open-source audio feature extractor. ACM Multimed 1459–1462
36.
go back to reference Golik P, Tüske Z, Schlüter R, Ney H (2015) Convolutional neural networks for acoustic modeling of raw time signal in LVCSR. INTERSPEECH Golik P, Tüske Z, Schlüter R, Ney H (2015) Convolutional neural networks for acoustic modeling of raw time signal in LVCSR. INTERSPEECH
37.
go back to reference Hoshen Y, Weiss RJ, Wilson KW (2015) Speech acoustic modeling from raw multichannel waveforms. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 4624–4628 Hoshen Y, Weiss RJ, Wilson KW (2015) Speech acoustic modeling from raw multichannel waveforms. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 4624–4628
38.
go back to reference Mitra V, Franco H (2015) Time-frequency convolutional networks for robust speech recognition. IEEE Worksh Autom Speech Recognit Understand (ASRU) 2015:317–323CrossRef Mitra V, Franco H (2015) Time-frequency convolutional networks for robust speech recognition. IEEE Worksh Autom Speech Recognit Understand (ASRU) 2015:317–323CrossRef
39.
go back to reference Li P, Qian J, Wang T (2015) Automatic instrument recognition in polyphonic music using convolutional neural networks. CoRR arXiv:1511.05520 Li P, Qian J, Wang T (2015) Automatic instrument recognition in polyphonic music using convolutional neural networks. CoRR arXiv:​1511.​05520
40.
go back to reference Palaz D, Magimai-Doss M, Collobert R (2015) Analysis of CNN-based speech recognition system using raw speech as input. INTERSPEECH Palaz D, Magimai-Doss M, Collobert R (2015) Analysis of CNN-based speech recognition system using raw speech as input. INTERSPEECH
41.
go back to reference Schlüter R, Bezrukov I, Wagner H, Ney H (2007) Gammatone features and feature combination for large vocabulary speech recognition. In: 2007 IEEE international conference on acoustics, speech and signal processing—ICASSP ’07, 4, IV-649-IV-652 Schlüter R, Bezrukov I, Wagner H, Ney H (2007) Gammatone features and feature combination for large vocabulary speech recognition. In: 2007 IEEE international conference on acoustics, speech and signal processing—ICASSP ’07, 4, IV-649-IV-652
42.
go back to reference Abdoli S, Cardinal P, Koerich AL (2019) End-to-end environmental sound classification using a 1D convolutional neural network. Expert Syst Appl 136:252–263CrossRef Abdoli S, Cardinal P, Koerich AL (2019) End-to-end environmental sound classification using a 1D convolutional neural network. Expert Syst Appl 136:252–263CrossRef
45.
go back to reference Tüske Z, Golik P, Schlüter R, Ney H (2014) Acoustic modeling with deep neural networks using raw time signal for LVCSR. INTERSPEECH Tüske Z, Golik P, Schlüter R, Ney H (2014) Acoustic modeling with deep neural networks using raw time signal for LVCSR. INTERSPEECH
47.
go back to reference Kunze J, Kirsch L, Kurenkov I, Krug A, Johannsmeier J, Stober S (2017) Transfer learning for speech recognition on a budget Kunze J, Kirsch L, Kurenkov I, Krug A, Johannsmeier J, Stober S (2017) Transfer learning for speech recognition on a budget
48.
go back to reference Ghosal D, Kolekar MH (2018) Music genre recognition using deep neural networks and transfer learning. Proc Interspeech 2018:2087–2091CrossRef Ghosal D, Kolekar MH (2018) Music genre recognition using deep neural networks and transfer learning. Proc Interspeech 2018:2087–2091CrossRef
49.
go back to reference Qin C-X, Qu D, Zhang L-H (2018) Towards end-to-end speech recognition with transfer learning. EURASIP J Audio Speech Music Process 2018:1687–4722CrossRef Qin C-X, Qu D, Zhang L-H (2018) Towards end-to-end speech recognition with transfer learning. EURASIP J Audio Speech Music Process 2018:1687–4722CrossRef
50.
go back to reference van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605MATH van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605MATH
Metadata
Title
EarNet: Biometric Embeddings for End to End Person Authentication System Using Transient Evoked Otoacoustic Emission Signals
Authors
Akshath Varugeese
A. Shahina
Khadar Nawas
A. Nayeemulla Khan
Publication date
10-11-2021
Publisher
Springer US
Published in
Neural Processing Letters / Issue 1/2022
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10546-2

Other articles of this Issue 1/2022

Neural Processing Letters 1/2022 Go to the issue