Skip to main content
Top

2021 | OriginalPaper | Chapter

Ecofriendly Approach for Bioethanol Production from Microalgae

Authors : Pandian Prabakaran, Virumandi Pradeepa, Nagasundaram Rashiya, Sundaram Ravikumar, Sathiamoorthi Thangavelu, Gopal Selvakumar

Published in: Bioremediation and Green Technologies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cultivation of microalgae biomass for bioethanol production appeared as one of the potential solution to drive green and sustainable fuel production. Microalgae are photosynthetic microorganism that can grow rapidly compared to the terrestrial plants and able to accumulate high content of carbohydrate within their cells. The carbohydrate is usually stored in the form of starch, which is easier to breakdown to simple reducing sugar than lignocellulosic biomass. In the present chapter, the process route to produce bioethanol from microalgae biomass is discussed, including the cultivation strategies to enhance microalgae carbohydrate productivity, biomass pre-treatment methods, hydrolysis and fermentation process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Andersen RA (2013) The microalgal cell. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley, New York, pp 3–20 Andersen RA (2013) The microalgal cell. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley, New York, pp 3–20
go back to reference Agbor VB et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685PubMedCrossRef Agbor VB et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685PubMedCrossRef
go back to reference Balat M et al (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573CrossRef Balat M et al (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573CrossRef
go back to reference Barsanti L, Gualtieri P (2014) General overview. In: Algae: anatomy, biochemistry, and biotechnology, 2nd ed. CRC Press, New York, pp 1–48 Barsanti L, Gualtieri P (2014) General overview. In: Algae: anatomy, biochemistry, and biotechnology, 2nd ed. CRC Press, New York, pp 1–48
go back to reference Barsanti L, Gualtieri P (2014) Algae utilization. In: Algae: anatomy, biochemistry, and biotechnology, 2nd ed. CRC Press, New York, pp 267–308 Barsanti L, Gualtieri P (2014) Algae utilization. In: Algae: anatomy, biochemistry, and biotechnology, 2nd ed. CRC Press, New York, pp 267–308
go back to reference Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge
go back to reference Beer LL et al (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271PubMedCrossRef Beer LL et al (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271PubMedCrossRef
go back to reference Berges JA et al (1996) Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol 110:689–696PubMedPubMedCentralCrossRef Berges JA et al (1996) Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol 110:689–696PubMedPubMedCentralCrossRef
go back to reference Brányiková I et al (2011) Microalgae-novel highly efficient starch producers. Biotechnol Bioeng 108:766–776PubMedCrossRef Brányiková I et al (2011) Microalgae-novel highly efficient starch producers. Biotechnol Bioeng 108:766–776PubMedCrossRef
go back to reference Cade-Menun BJ, Paytan A (2010) Nutrient temperature and light stress alter phosphorus and carbon forms in culture-grown algae. Mar Chem 121: 27–36 Cade-Menun BJ, Paytan A (2010) Nutrient temperature and light stress alter phosphorus and carbon forms in culture-grown algae. Mar Chem 121: 27–36
go back to reference Cheng Y et al (2009) Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84:777–781CrossRef Cheng Y et al (2009) Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84:777–781CrossRef
go back to reference Couto RM et al (2010) Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Eng Life Sci 10:158–164 Couto RM et al (2010) Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Eng Life Sci 10:158–164
go back to reference El-Dalatony MM et al (2016) Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresour Technol 219:98–105 El-Dalatony MM et al (2016) Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresour Technol 219:98–105
go back to reference González-Fernández C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30:1655–1661 González-Fernández C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30:1655–1661
go back to reference Hargreaves PI et al (2013) Production of ethanol 3G from Kappaphycus alvarezii: Evaluation of different process strategies. Bioresource Technol 134: 257–263 Hargreaves PI et al (2013) Production of ethanol 3G from Kappaphycus alvarezii: Evaluation of different process strategies. Bioresource Technol 134: 257–263
go back to reference Harun R, Jason WSY, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88:3464–3467CrossRef Harun R, Jason WSY, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88:3464–3467CrossRef
go back to reference Harun R et al (2011) Analysis of process configurations for bioethanol production from microalgal biomass. In: Shaukat SS (ed) Progress in biomass and bioenergy production. Intech Science, Technology & Medicine, Croatia, pp 978–53 Harun R et al (2011) Analysis of process configurations for bioethanol production from microalgal biomass. In: Shaukat SS (ed) Progress in biomass and bioenergy production. Intech Science, Technology & Medicine, Croatia, pp 978–53
go back to reference Harun R et al (2014) Algal biomass conversion to bioethanol—a step-by-step assessment. Biotechnol J 9:73–86 Harun R et al (2014) Algal biomass conversion to bioethanol—a step-by-step assessment. Biotechnol J 9:73–86
go back to reference Hernández D et al (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945CrossRef Hernández D et al (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945CrossRef
go back to reference Ho SH et al (2011) Perspectives on microalgal CO2-emission mitigation systems—A review. Biotechnol Adv 29:189–198PubMedCrossRef Ho SH et al (2011) Perspectives on microalgal CO2-emission mitigation systems—A review. Biotechnol Adv 29:189–198PubMedCrossRef
go back to reference Ho SH et al (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Biores Technol 113:244–252CrossRef Ho SH et al (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Biores Technol 113:244–252CrossRef
go back to reference Ho SH et al (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Biores Technol 135:191–198CrossRef Ho SH et al (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Biores Technol 135:191–198CrossRef
go back to reference Ho SH et al (2013) Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Biores Technol 135:157–165CrossRef Ho SH et al (2013) Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Biores Technol 135:157–165CrossRef
go back to reference Ho S-H et al (2013) Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Biores Technol 145:142–149CrossRef Ho S-H et al (2013) Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Biores Technol 145:142–149CrossRef
go back to reference Ho SH et al (2013) Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Biores Technol 143:163–171CrossRef Ho SH et al (2013) Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Biores Technol 143:163–171CrossRef
go back to reference Hwang J-H et al (2016) Enhancement of continuous fermentative bioethanol production using combined treatment of mixed microalgal biomass. Algal Res 17:14–20CrossRef Hwang J-H et al (2016) Enhancement of continuous fermentative bioethanol production using combined treatment of mixed microalgal biomass. Algal Res 17:14–20CrossRef
go back to reference Hu Q (2007) Environmental effects on cell composition. In: Handbook of microalgal culture. Blackwell Publishing Ltd, pp 83–94 Hu Q (2007) Environmental effects on cell composition. In: Handbook of microalgal culture. Blackwell Publishing Ltd, pp 83–94
go back to reference International Energy Agency (2016) Excerpt from: renewables information. IEA Publishing, United States of America, Statistics International Energy Agency (2016) Excerpt from: renewables information. IEA Publishing, United States of America, Statistics
go back to reference Izumo A et al (2007) Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: Comparison of structure and properties of pyrenoid and stroma starch. Plant Sci 172:1138–1147CrossRef Izumo A et al (2007) Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: Comparison of structure and properties of pyrenoid and stroma starch. Plant Sci 172:1138–1147CrossRef
go back to reference Ji CF et al (2011) Effects of nutrient deprivation on biochemical compositions and photo-hydrogen production of Tetraselmis subcordiformis. Int J Hydrogen Energy 36:5817–5821CrossRef Ji CF et al (2011) Effects of nutrient deprivation on biochemical compositions and photo-hydrogen production of Tetraselmis subcordiformis. Int J Hydrogen Energy 36:5817–5821CrossRef
go back to reference Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuels 23:5179–5183CrossRef Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuels 23:5179–5183CrossRef
go back to reference Kalnenieks U et al (2014) Modeling of Zymomonas mobilis central metabolism for novel metabolic engineering strategies. Front Microbiol 5(42):2014 Kalnenieks U et al (2014) Modeling of Zymomonas mobilis central metabolism for novel metabolic engineering strategies. Front Microbiol 5(42):2014
go back to reference Kirkels A (2016) Biomass boom or bubble? A longitudinal study on expectation dynamics . Technol Forecast Soc Chang 103:83–96CrossRef Kirkels A (2016) Biomass boom or bubble? A longitudinal study on expectation dynamics . Technol Forecast Soc Chang 103:83–96CrossRef
go back to reference Kumar A et al (2010) Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions . Trends Biotechnol 28:371–380PubMedCrossRef Kumar A et al (2010) Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions . Trends Biotechnol 28:371–380PubMedCrossRef
go back to reference Kim KH et al (2014) Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Biores Technol 153:47–54CrossRef Kim KH et al (2014) Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Biores Technol 153:47–54CrossRef
go back to reference Li Y et al (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636PubMedCrossRef Li Y et al (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636PubMedCrossRef
go back to reference Liang Y et al (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotech Lett 31:1043–1049CrossRef Liang Y et al (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotech Lett 31:1043–1049CrossRef
go back to reference Lim S, Teong LK (2010) Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Renew Sustain Energy Rev 14:938–954CrossRef Lim S, Teong LK (2010) Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Renew Sustain Energy Rev 14:938–954CrossRef
go back to reference Lv et al (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions J. M. Bioresource Technol 101: 6797–6804 Lv et al (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions J. M. Bioresource Technol 101: 6797–6804
go back to reference Maity JP et al (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review, Energy Maity JP et al (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review, Energy
go back to reference Martin J et al (2016) Saccharification of microalgae biomass obtained from wastewater treatment by enzymatic hydrolysis. Effect of alkaline-peroxide pretreatment. Bioresour Technol 218:265–271 Martin J et al (2016) Saccharification of microalgae biomass obtained from wastewater treatment by enzymatic hydrolysis. Effect of alkaline-peroxide pretreatment. Bioresour Technol 218:265–271
go back to reference Masojídek J et al (2013) Photosynthesis in microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd ed. Wiley, New York, pp 21–36 Masojídek J et al (2013) Photosynthesis in microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd ed. Wiley, New York, pp 21–36
go back to reference Melis A et al (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135PubMedPubMedCentralCrossRef Melis A et al (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135PubMedPubMedCentralCrossRef
go back to reference Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086PubMedCrossRef Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086PubMedCrossRef
go back to reference Markou G et al (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96:631–645PubMedCrossRef Markou G et al (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96:631–645PubMedCrossRef
go back to reference Mata TM et al (2010) Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev 14:217–232CrossRef Mata TM et al (2010) Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev 14:217–232CrossRef
go back to reference Morales-Sánchez D et al (2013) Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnol Biofuels 6 Morales-Sánchez D et al (2013) Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnol Biofuels 6
go back to reference Miranda JR et al (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Biores Technol 104:342–348CrossRef Miranda JR et al (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Biores Technol 104:342–348CrossRef
go back to reference OECD/FAO (2016) OECD-FAO Agricultural Outlook 2016–2025. OECD Publishing, Paris 04 July 2016 OECD/FAO (2016) OECD-FAO Agricultural Outlook 2016–2025. OECD Publishing, Paris 04 July 2016
go back to reference Ra CH, Kim SK (2014) Bioethanol production from macroalgae and microbes. In: Kim S-K, Lee C-G (eds) Marine bioenergy: trends and developments. CRC Press, Taylor & Francis Group, New York, pp 257–271 Ra CH, Kim SK (2014) Bioethanol production from macroalgae and microbes. In: Kim S-K, Lee C-G (eds) Marine bioenergy: trends and developments. CRC Press, Taylor & Francis Group, New York, pp 257–271
go back to reference Renewable Fuels Association (2016) Fueling a high octane future. RFA Publishing, New York Renewable Fuels Association (2016) Fueling a high octane future. RFA Publishing, New York
go back to reference Rodolfi L et al (2009) Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112PubMedCrossRef Rodolfi L et al (2009) Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112PubMedCrossRef
go back to reference Simas-Rodrigues C et al (2015) Microalgae for economic applications: advantages and perspectives for bioethanol. J Exp Bot 66:4097–4108PubMedCrossRef Simas-Rodrigues C et al (2015) Microalgae for economic applications: advantages and perspectives for bioethanol. J Exp Bot 66:4097–4108PubMedCrossRef
go back to reference Stick RV, Williams SJ (2009) Disaccharides, Oligosaccharides and Polysaccharides (Chap. 9). In: Carbohydrates: the essential molecules of life, 2nd ed. Elsevier, Amsterdam, pp 321–342 Stick RV, Williams SJ (2009) Disaccharides, Oligosaccharides and Polysaccharides (Chap. 9). In: Carbohydrates: the essential molecules of life, 2nd ed. Elsevier, Amsterdam, pp 321–342
go back to reference Suganya T et al (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew Sustain Energy Rev 55:909–941CrossRef Suganya T et al (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew Sustain Energy Rev 55:909–941CrossRef
go back to reference Thyssen C et al (2001) The CO2-concentrating mechanism in the physiological context: Lowering the CO2 supply diminishes culture growth and economizes starch utilization in Chlamydomonas reinhardtii . Planta 213:629–639PubMedCrossRef Thyssen C et al (2001) The CO2-concentrating mechanism in the physiological context: Lowering the CO2 supply diminishes culture growth and economizes starch utilization in Chlamydomonas reinhardtii . Planta 213:629–639PubMedCrossRef
go back to reference Widjaja A et al (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20CrossRef Widjaja A et al (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20CrossRef
go back to reference Wykoff DD et al (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiology 117:129–139 Wykoff DD et al (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiology 117:129–139
go back to reference Yang S et al (2016) Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microbial Biotechnol Yang S et al (2016) Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microbial Biotechnol
go back to reference Yuan T et al (2016) Microalgae pretreatment with liquid hot water to enhance enzymatic hydrolysis efficiency. Biores Technol 220:530–536CrossRef Yuan T et al (2016) Microalgae pretreatment with liquid hot water to enhance enzymatic hydrolysis efficiency. Biores Technol 220:530–536CrossRef
go back to reference Yao CH et al (2013) Characterization of cell growth and starch production in the marine green microalga Tetraselmis subcordiformis under extracellular phosphorus-deprived and sequentially phosphorus-replete conditions. Appl Microbiol Biotechnol 97:6099–6110PubMedCrossRef Yao CH et al (2013) Characterization of cell growth and starch production in the marine green microalga Tetraselmis subcordiformis under extracellular phosphorus-deprived and sequentially phosphorus-replete conditions. Appl Microbiol Biotechnol 97:6099–6110PubMedCrossRef
go back to reference Zhao G et al (2013) Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Biores Technol 128:337–344CrossRef Zhao G et al (2013) Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Biores Technol 128:337–344CrossRef
go back to reference Zhang L et al (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561PubMedCrossRef Zhang L et al (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561PubMedCrossRef
Metadata
Title
Ecofriendly Approach for Bioethanol Production from Microalgae
Authors
Pandian Prabakaran
Virumandi Pradeepa
Nagasundaram Rashiya
Sundaram Ravikumar
Sathiamoorthi Thangavelu
Gopal Selvakumar
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-64122-1_21

Premium Partners