Skip to main content
Top
Published in:
Cover of the book

2015 | OriginalPaper | Chapter

1. Ecological Mechanisms of Dark H2 Production by a Mixed Microbial Community

Authors : Bernardo Ruggeri, Tonia Tommasi, Sara Sanfilippo

Published in: BioH2 & BioCH4 Through Anaerobic Digestion

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter the energy metabolism of hydrogen-producing bacteria (HPB) microorganisms is described. This method of hydrogen production depends principally on the activity of some essential enzymes such as hydrogenase and ferredoxin, and therefore a description of the mechanisms involved in dark H2 production is given. The principles of dark fermentation are illustrated, focusing on the physiological functions of the enzymes involved and on the main bacteria responsible for H2 production by anaerobic digestion (AD). The chapter then describes the ecological factors that influence HPB, like temperature, pH and partial pressure of hydrogen.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T.D. Brock, M.T. Madigan, J.M. Martino, J. Parker, Biology of Microorganisms, Prentice-Hal , (New York Press, New York, 1994) T.D. Brock, M.T. Madigan, J.M. Martino, J. Parker, Biology of Microorganisms, Prentice-Hal , (New York Press, New York, 1994)
2.
go back to reference K. Rabaey, Microbial Fuel Cells: Novel Biotechnology for Electricity Generation. Ph.D. Thesis, Ghent University, Belgium, 2005 K. Rabaey, Microbial Fuel Cells: Novel Biotechnology for Electricity Generation. Ph.D. Thesis, Ghent University, Belgium, 2005
3.
go back to reference P. Aelterman, Microbial Fuel Cells for the Treatment of Waste Streams with Energy Recovery. Ph.D. Thesis, Gent University Belgium, 2009 P. Aelterman, Microbial Fuel Cells for the Treatment of Waste Streams with Energy Recovery. Ph.D. Thesis, Gent University Belgium, 2009
4.
go back to reference J.E. Champine, B. Underhill, J.M. Johnston, W.W. Lilly, S. Goodwin, Electron transfer in the dissimilatory iron-reducing bacterium Geobacter metallireducens. Anaerobe 6, 187–196 (2000)CrossRef J.E. Champine, B. Underhill, J.M. Johnston, W.W. Lilly, S. Goodwin, Electron transfer in the dissimilatory iron-reducing bacterium Geobacter metallireducens. Anaerobe 6, 187–196 (2000)CrossRef
5.
go back to reference P. Mitchell, Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature (London) 191, 144–148 (1961)CrossRef P. Mitchell, Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature (London) 191, 144–148 (1961)CrossRef
6.
go back to reference H. Schlegel, General Microbiology, 7th edn. (Cambridge University Press, Cambridge, 1992) H. Schlegel, General Microbiology, 7th edn. (Cambridge University Press, Cambridge, 1992)
7.
go back to reference R.K. Thauer, K. Jungermann, K. Decker, Energy conservation in chemotropic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977) R.K. Thauer, K. Jungermann, K. Decker, Energy conservation in chemotropic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977)
8.
go back to reference B.E. Logan, Extracting hydrogen electricity from renewable resources. Environ. Sci. Technol. 38, 160A–167A (2004)CrossRef B.E. Logan, Extracting hydrogen electricity from renewable resources. Environ. Sci. Technol. 38, 160A–167A (2004)CrossRef
9.
go back to reference K. Uyeda, J.C. Rabinowitz, Pyruvate-ferredoxin oxidoreductase. IV studies on the reaction. J. Biol. Chem. 246, 3120–3125 (1971) K. Uyeda, J.C. Rabinowitz, Pyruvate-ferredoxin oxidoreductase. IV studies on the reaction. J. Biol. Chem. 246, 3120–3125 (1971)
10.
go back to reference C. Furdui, S.W. Ragsdale, The role of pyruvate feredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the wood-ljungdahl pathway. J. Biol. Chem. 275(37), 28494–28499 (2000)CrossRef C. Furdui, S.W. Ragsdale, The role of pyruvate feredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the wood-ljungdahl pathway. J. Biol. Chem. 275(37), 28494–28499 (2000)CrossRef
11.
go back to reference F.R. Hawkes, R. Dinsdale, D.L. Hawkes, I. Hussy, Sustainable fermentative hydrogen production: challenges for process optimization. Int. J. Hydrogen Energy 27, 1339–1347 (2002)CrossRef F.R. Hawkes, R. Dinsdale, D.L. Hawkes, I. Hussy, Sustainable fermentative hydrogen production: challenges for process optimization. Int. J. Hydrogen Energy 27, 1339–1347 (2002)CrossRef
12.
go back to reference H.J. Beinert, Iron-sulfur proteins: ancient structures, still full of surprises. J. Biol. Inorg. Chem. 5, 2–15 (2000)CrossRef H.J. Beinert, Iron-sulfur proteins: ancient structures, still full of surprises. J. Biol. Inorg. Chem. 5, 2–15 (2000)CrossRef
13.
go back to reference K. Chen, C.A. Bouagura, G.J. Tilley, J.P. McEvoy, Y.S. Jung, F.A. Armstrong, C.D. Stout, B.K. Burgess, Crystal structure of ferrodoxin variant exhibiting large change in [Fe-S] reduction potential. Nat. Struct. Biol. 9, 188–192 (2002) K. Chen, C.A. Bouagura, G.J. Tilley, J.P. McEvoy, Y.S. Jung, F.A. Armstrong, C.D. Stout, B.K. Burgess, Crystal structure of ferrodoxin variant exhibiting large change in [Fe-S] reduction potential. Nat. Struct. Biol. 9, 188–192 (2002)
14.
go back to reference P.C. Hallenbeck, J.R. Benemann, Biological hydrogen production; fundamentals and limiting processes. Int. J. Hydrogen Energy 27, 1185–1193 (2002)CrossRef P.C. Hallenbeck, J.R. Benemann, Biological hydrogen production; fundamentals and limiting processes. Int. J. Hydrogen Energy 27, 1185–1193 (2002)CrossRef
15.
go back to reference P.M. Vignais, B. Billoud, J. Meyer, Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25, 455–501 (2001)CrossRef P.M. Vignais, B. Billoud, J. Meyer, Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25, 455–501 (2001)CrossRef
16.
go back to reference A. Dubini, R.L. Pye, R.L. Jack, T. Palmer, F. Sargent, How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli. Int. J. Hydrogen Energy 27, 1413–1420 (2002)CrossRef A. Dubini, R.L. Pye, R.L. Jack, T. Palmer, F. Sargent, How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli. Int. J. Hydrogen Energy 27, 1413–1420 (2002)CrossRef
17.
go back to reference A. Yoshida, T. Nishimura, H. Kawaguchi, M. Inui, H. Yukawa, Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Appl. Microbiol. Biotechnol. 73, 67–72 (2006)CrossRef A. Yoshida, T. Nishimura, H. Kawaguchi, M. Inui, H. Yukawa, Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Appl. Microbiol. Biotechnol. 73, 67–72 (2006)CrossRef
18.
go back to reference F.A.L. Pinto, O. Troshina, P. Lindblad, A brief look at three decades of research on cyanobacterial hydrogen evolution. Int. J. Hydrogen Energy 27, 1209–1215 (2002)CrossRef F.A.L. Pinto, O. Troshina, P. Lindblad, A brief look at three decades of research on cyanobacterial hydrogen evolution. Int. J. Hydrogen Energy 27, 1209–1215 (2002)CrossRef
19.
go back to reference K. Nath, D. Das, Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol. 65, 520–529 (2004)CrossRef K. Nath, D. Das, Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol. 65, 520–529 (2004)CrossRef
20.
go back to reference B. Mandal, K. Nath, D. Das, Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae. Biotechnol. Lett. 28, 831–835 (2006)CrossRef B. Mandal, K. Nath, D. Das, Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae. Biotechnol. Lett. 28, 831–835 (2006)CrossRef
21.
go back to reference G. Rao, R. Murtharasan, Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes. Appl. Environ. Microbiol. 53, 1232–1235 (1987) G. Rao, R. Murtharasan, Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes. Appl. Environ. Microbiol. 53, 1232–1235 (1987)
22.
go back to reference L. Girbal, P. Soucaille, Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J. Bacteriol. 176, 6433–6438 (1994) L. Girbal, P. Soucaille, Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J. Bacteriol. 176, 6433–6438 (1994)
23.
go back to reference P.W. King, M.C. Posewitz, M.L. Ghirardi, M. Seibert, Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J. Bacteriol. 188, 2163–2172 (2006)CrossRef P.W. King, M.C. Posewitz, M.L. Ghirardi, M. Seibert, Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J. Bacteriol. 188, 2163–2172 (2006)CrossRef
24.
go back to reference O. Guerrini, B. Burlat, C. Leger, B. Guigliarelli, P. Soucaille, L. Girbal, Characterization of two 2[4Fe4S] ferredoxins from Clostridium acetobutylicum. Curr. Microbiol. 56, 261–267 (2007)CrossRef O. Guerrini, B. Burlat, C. Leger, B. Guigliarelli, P. Soucaille, L. Girbal, Characterization of two 2[4Fe4S] ferredoxins from Clostridium acetobutylicum. Curr. Microbiol. 56, 261–267 (2007)CrossRef
25.
go back to reference P.Y. Lin, L.M. Wang, Y.R. Wu, W.J. Ren, C.J. Hsiao, S.L. Li, J.S. Chang, Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. Int. J. Hydrogen Energy 32, 1728–1735 (2007)CrossRef P.Y. Lin, L.M. Wang, Y.R. Wu, W.J. Ren, C.J. Hsiao, S.L. Li, J.S. Chang, Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. Int. J. Hydrogen Energy 32, 1728–1735 (2007)CrossRef
26.
go back to reference A.J. Wolfe, The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12–50 (2005)CrossRef A.J. Wolfe, The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12–50 (2005)CrossRef
27.
go back to reference R.G. Sawers, Formate and its role in hydrogen production in Escherichia coli. Biochem. Soci. Trans. 33, 42–46 (2005)CrossRef R.G. Sawers, Formate and its role in hydrogen production in Escherichia coli. Biochem. Soci. Trans. 33, 42–46 (2005)CrossRef
28.
go back to reference W.T. Self, A. Hasona, K.T. Shanmugam, Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzymes in Escherichia coli. J. Bacteriol. 186, 580–587 (2004)CrossRef W.T. Self, A. Hasona, K.T. Shanmugam, Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzymes in Escherichia coli. J. Bacteriol. 186, 580–587 (2004)CrossRef
29.
go back to reference Y.F. Li, N.Q. Ren, Y. Chen, G.X. Zheng, Ecological mechanisms of fermentative hydrogen production by bacteria. Int. J. Hydrogen Energy 32, 755–760 (2007)CrossRef Y.F. Li, N.Q. Ren, Y. Chen, G.X. Zheng, Ecological mechanisms of fermentative hydrogen production by bacteria. Int. J. Hydrogen Energy 32, 755–760 (2007)CrossRef
30.
go back to reference Y. Zhang, J. Shen, Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int. J. Hydrogen Energy 31, 441–446 (2006)CrossRef Y. Zhang, J. Shen, Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int. J. Hydrogen Energy 31, 441–446 (2006)CrossRef
31.
go back to reference W.M. Chen, Z.J. Tseng, K.S. Lee, J.S. Chang, Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy 30, 1063–1070 (2005)CrossRef W.M. Chen, Z.J. Tseng, K.S. Lee, J.S. Chang, Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy 30, 1063–1070 (2005)CrossRef
32.
go back to reference O. Mizuno, M. Shinia, K. Suzuki, J. Yaguguchi, T. Noike, Effect of pH on hydrogen production from noodle manufacturing wastewater. Proc. Environ. Eng. Res. 37, 97–106 (2000) O. Mizuno, M. Shinia, K. Suzuki, J. Yaguguchi, T. Noike, Effect of pH on hydrogen production from noodle manufacturing wastewater. Proc. Environ. Eng. Res. 37, 97–106 (2000)
33.
go back to reference J.J. Lay, Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68(3), 269–278 (2000)CrossRef J.J. Lay, Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68(3), 269–278 (2000)CrossRef
34.
go back to reference H. Yokoi, T. Ohkawara, J. Hirose, S. Hayashi, Y. Takasaki, Characteristics of Hydrogen production by aciduric enterobacter aerogenes Strain HO-39. J. Ferment. Bioeng. 80(6), 571–574 (1995)CrossRef H. Yokoi, T. Ohkawara, J. Hirose, S. Hayashi, Y. Takasaki, Characteristics of Hydrogen production by aciduric enterobacter aerogenes Strain HO-39. J. Ferment. Bioeng. 80(6), 571–574 (1995)CrossRef
35.
go back to reference C.Y. Lin, C.H. Lay, Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int. J. Hydrogen Energy 29, 41–45 (2004)CrossRef C.Y. Lin, C.H. Lay, Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int. J. Hydrogen Energy 29, 41–45 (2004)CrossRef
36.
go back to reference J.J. Lay, K.S. Fan, J.1 Chang, C.H. Ku, Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int. J. Hydrogen Energy 28(12), 1361–1367 (2003) J.J. Lay, K.S. Fan, J.1 Chang, C.H. Ku, Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int. J. Hydrogen Energy 28(12), 1361–1367 (2003)
37.
go back to reference C.Y. Lin, C.H. Lay, A nutrient formulation for fermentative hydrogen production using anaeobic sewage sludge microflora. Int. J. Hydrogen Energy 30, 285–292 (2005)CrossRef C.Y. Lin, C.H. Lay, A nutrient formulation for fermentative hydrogen production using anaeobic sewage sludge microflora. Int. J. Hydrogen Energy 30, 285–292 (2005)CrossRef
38.
go back to reference I. Hussy, F.R. Hawkes, R. Dinsdale, D.L. Hawkes, Continuous fermentative hydrogen production from sucrose and sugarbeet. Int. J. Hydrogen Energy 30, 471–483 (2005)CrossRef I. Hussy, F.R. Hawkes, R. Dinsdale, D.L. Hawkes, Continuous fermentative hydrogen production from sucrose and sugarbeet. Int. J. Hydrogen Energy 30, 471–483 (2005)CrossRef
39.
go back to reference I. Valdez-Vazquez, H.M. Poggi-Varaldo, Hydrogen production by fermentative consortia. Renew. Sustain. Energy Rev. 13, 1000–1013 (2009)CrossRef I. Valdez-Vazquez, H.M. Poggi-Varaldo, Hydrogen production by fermentative consortia. Renew. Sustain. Energy Rev. 13, 1000–1013 (2009)CrossRef
40.
go back to reference R.J. Lamed, J.H. Lobos, T.M. Su, Effects of stirring and hydrogen on fermentation products of clostridium thermocellum. Appl. Environ. Microbiol. 54(5), 1216–1221 (1988) R.J. Lamed, J.H. Lobos, T.M. Su, Effects of stirring and hydrogen on fermentation products of clostridium thermocellum. Appl. Environ. Microbiol. 54(5), 1216–1221 (1988)
Metadata
Title
Ecological Mechanisms of Dark H2 Production by a Mixed Microbial Community
Authors
Bernardo Ruggeri
Tonia Tommasi
Sara Sanfilippo
Copyright Year
2015
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-6431-9_1