Skip to main content
Top

2019 | OriginalPaper | Chapter

EcoSim, an Enhanced Artificial Ecosystem: Addressing Deeper Behavioral, Ecological, and Evolutionary Questions

Authors : Ryan Scott, Brian MacPherson, Robin Gras

Published in: Cognitive Architectures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter discusses individual-based models (IBMs) and uses the Overview, Design concepts, and Details (ODD) protocol to describe a predator-prey evolutionary ecosystem IBM called EcoSim. EcoSim is one of the most complex and large-scale IBMs of its kind, allowing hundreds of thousands of intricate individuals to interact and evolve over thousands of time steps. Individuals in EcoSim have a behavioral model represented by a fuzzy cognitive map (FCM). The FCM, described in this chapter, is a cognitive architecture well-suited for individuals in EcoSim due to its efficiency and the complexity of decision-making it allows. Furthermore, it can be encoded as a vector of real numbers, lending itself to being part of the genetic material passed on by individuals during reproduction. This allows for meaningful evolution of their behaviors and natural selection without predefined fitness. EcoSim has been enhanced to increase the breadth and depth of the questions it can answer. New features include: fertilization of primary producers by consumers, predator-prey combat, sexual reproduction, sex-linkage of genes, multiple modes of reproduction, size-based dominance hierarchy, and more. In addition to describing EcoSim in detail, we present data from default EcoSim runs to show potential users the types of data EcoSim generates. Furthermore, we present a brief sensitivity analysis of some variables in EcoSim, and a case study that demonstrates research that can be performed using EcoSim. In the case study, we elucidate some evolutionary and behavioral impacts on animals under two conditions: when primary production is limited, and when energy expenditure is reduced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Andersson, M. B. (1994). Sexual selection. Princeton: Princeton University Press. Andersson, M. B. (1994). Sexual selection. Princeton: Princeton University Press.
4.
go back to reference Aspinall A, Gras R (2010) K-Means clustering as a speciation method within an individual-based evolving predator-prey ecosystem simulation. In 6th International Conference on Active media technology (pp. 318–329). Berlin, Heidelberg: Springer. Aspinall A, Gras R (2010) K-Means clustering as a speciation method within an individual-based evolving predator-prey ecosystem simulation. In 6th International Conference on Active media technology (pp. 318–329). Berlin, Heidelberg: Springer.
5.
go back to reference Augusiak, J., Van den Brink, P. J., & Grimm, V. (2014). Merging validation and evaluation of ecological models to evaludation: A review of terminology and a practical approach. Ecological Modelling, 280, 117–128.CrossRef Augusiak, J., Van den Brink, P. J., & Grimm, V. (2014). Merging validation and evaluation of ecological models to evaludation: A review of terminology and a practical approach. Ecological Modelling, 280, 117–128.CrossRef
6.
go back to reference Augustine, D. J., & McNaughton, S. J. (1998). Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. The Journal of wildlife management, 62, 1165–1183.CrossRef Augustine, D. J., & McNaughton, S. J. (1998). Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. The Journal of wildlife management, 62, 1165–1183.CrossRef
7.
go back to reference Bardgett, R. D., Wardle, D. A., & Yeates, G. W. (1998). Linking above-ground and below-ground interac-tions: How plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 30, 1867–1878.CrossRef Bardgett, R. D., Wardle, D. A., & Yeates, G. W. (1998). Linking above-ground and below-ground interac-tions: How plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 30, 1867–1878.CrossRef
8.
go back to reference Bardgett, R. D., Streeter, T., & Bol, R. (2003). Soil microbes compete effectively with plants for organic nitrogen inputs to temperate grasslands. Ecology, 84, 1277–1287.CrossRef Bardgett, R. D., Streeter, T., & Bol, R. (2003). Soil microbes compete effectively with plants for organic nitrogen inputs to temperate grasslands. Ecology, 84, 1277–1287.CrossRef
9.
go back to reference Bateson, P. (1983). Mate Choice. Cambridge: Cambridge University Press. Bateson, P. (1983). Mate Choice. Cambridge: Cambridge University Press.
10.
go back to reference Berryman, A. A. (1992). The origins and evolution of predator-prey theory. Ecology, 73, 1530–1535.CrossRef Berryman, A. A. (1992). The origins and evolution of predator-prey theory. Ecology, 73, 1530–1535.CrossRef
11.
go back to reference Blaxter, K. L. (1989). Energy Metabolism in Animals and Man. Cambridge: Cambridge University Press. Blaxter, K. L. (1989). Energy Metabolism in Animals and Man. Cambridge: Cambridge University Press.
13.
go back to reference Box, G.E.P. (1979). Robustness in the strategy of scientific model building. In R. L. Launer, & G. N. Wil-kinson (Eds.), Robustness in Statistics (pp. 201–236). Academic Press. Box, G.E.P. (1979). Robustness in the strategy of scientific model building. In R. L. Launer, & G. N. Wil-kinson (Eds.), Robustness in Statistics (pp. 201–236). Academic Press.
14.
go back to reference Bollache, L., Kaldonski, N., Troussard, J. P., et al. (2006). Spines and behaviour as defences against fish predators in an invasive freshwater amphipod. Animal Behaviour, 72, 627–633.CrossRef Bollache, L., Kaldonski, N., Troussard, J. P., et al. (2006). Spines and behaviour as defences against fish predators in an invasive freshwater amphipod. Animal Behaviour, 72, 627–633.CrossRef
15.
go back to reference Brännström, A., & Sumpter, D. J. T. (2005). The role of competition and clustering in population dynamics. Proceedings of the Royal Society of London B: Biological Sciences, 272, 2065–2072.CrossRef Brännström, A., & Sumpter, D. J. T. (2005). The role of competition and clustering in population dynamics. Proceedings of the Royal Society of London B: Biological Sciences, 272, 2065–2072.CrossRef
16.
go back to reference Britten, G. L., Dowd, M., Minto, C., et al. (2014). Predator decline leads to decreased stability in a coastal fish community. Ecology letters, 17, 1518–1525.CrossRef Britten, G. L., Dowd, M., Minto, C., et al. (2014). Predator decline leads to decreased stability in a coastal fish community. Ecology letters, 17, 1518–1525.CrossRef
17.
go back to reference Brodie, E. D, I. I. I., & Brodie, E. D, Jr. (1999). Predator-prey arms races: asymmetrical selection on predators and prey may be reduced when prey are dangerous. Bioscience, 49, 557–568.CrossRef Brodie, E. D, I. I. I., & Brodie, E. D, Jr. (1999). Predator-prey arms races: asymmetrical selection on predators and prey may be reduced when prey are dangerous. Bioscience, 49, 557–568.CrossRef
18.
go back to reference Brodie, E. D, Jr., Ridenhour, B. J., & Brodie, E. D, I. I. I. (2002). The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution, 56, 2067–2082.CrossRef Brodie, E. D, Jr., Ridenhour, B. J., & Brodie, E. D, I. I. I. (2002). The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution, 56, 2067–2082.CrossRef
19.
go back to reference Bürger, R. (2000). The Mathematical Theory of Selection, Recombination, and Mutation. Chichester: Wiley.MATH Bürger, R. (2000). The Mathematical Theory of Selection, Recombination, and Mutation. Chichester: Wiley.MATH
20.
go back to reference Butler, P. J., Green, J. A., Boyd, I. L., & Speakman, J. R. (2004). Measuring metabolic rate in the field: The pros and cons of the doubly labelled water and heart rate methods. Functional ecology, 18, 168–183.CrossRef Butler, P. J., Green, J. A., Boyd, I. L., & Speakman, J. R. (2004). Measuring metabolic rate in the field: The pros and cons of the doubly labelled water and heart rate methods. Functional ecology, 18, 168–183.CrossRef
21.
go back to reference Chapman, J. L., & Reiss, M. J. (1999). Ecology: Principles and applications. Cambridge: Cambridge University Press. Chapman, J. L., & Reiss, M. J. (1999). Ecology: Principles and applications. Cambridge: Cambridge University Press.
23.
go back to reference Clune, J., Goldsby, H. J., Ofria, C., & Pennock, R. T. (2011). Selective pressures for accurate altruism targeting: Evidence from digital evolution for difficult-to-test aspects of inclusive fitness theory. Proceedings of the Royal Society of London B: Biological Sciences, 278, 666–674.CrossRef Clune, J., Goldsby, H. J., Ofria, C., & Pennock, R. T. (2011). Selective pressures for accurate altruism targeting: Evidence from digital evolution for difficult-to-test aspects of inclusive fitness theory. Proceedings of the Royal Society of London B: Biological Sciences, 278, 666–674.CrossRef
24.
go back to reference Davies, T. J., Savolainen, V., Chase, M. W., et al. (2004). Environmental energy and evolutionary rates in flowering plants. Proceedings of the Royal Society of London B: Biological Sciences, 271, 2195–2200.CrossRef Davies, T. J., Savolainen, V., Chase, M. W., et al. (2004). Environmental energy and evolutionary rates in flowering plants. Proceedings of the Royal Society of London B: Biological Sciences, 271, 2195–2200.CrossRef
25.
go back to reference DeAngelis DL, Grimm V (2014) Individual-based models in ecology after four decades. F1000Prime Report, 6(39). DeAngelis DL, Grimm V (2014) Individual-based models in ecology after four decades. F1000Prime Report, 6(39).
27.
go back to reference de Los Santos, C. B., Neuparth, T., Torres, T., et al. (2015). Ecological modelling and toxicity data coupled to assess population recovery of marine amphipod Gammarus locusta: Application to disturbance by chronic exposure to aniline. Aquatic Toxicology, 163, 60–70. de Los Santos, C. B., Neuparth, T., Torres, T., et al. (2015). Ecological modelling and toxicity data coupled to assess population recovery of marine amphipod Gammarus locusta: Application to disturbance by chronic exposure to aniline. Aquatic Toxicology, 163, 60–70.
28.
go back to reference Devaurs, D., & Gras, R. (2010). Species abundance patterns in an ecosystem simulation studied through Fishers logseries. Simulation Modelling Practice and Theory, 18, 100–123.CrossRef Devaurs, D., & Gras, R. (2010). Species abundance patterns in an ecosystem simulation studied through Fishers logseries. Simulation Modelling Practice and Theory, 18, 100–123.CrossRef
29.
go back to reference Drent, R. H., & Van der Wal, R. (1999). Cyclic Grazing in Vertebrates and the Manipulation of the Food Resource. In H. Olff, V. K. Brown, & R. H. Drent (Eds.), Herbivores: Between Plants and Predators (pp. 271–299). London: Blackwell. Drent, R. H., & Van der Wal, R. (1999). Cyclic Grazing in Vertebrates and the Manipulation of the Food Resource. In H. Olff, V. K. Brown, & R. H. Drent (Eds.), Herbivores: Between Plants and Predators (pp. 271–299). London: Blackwell.
30.
go back to reference Eklöf, J., & uba J, Petersons G, Rydell J., (2014). Visual acuity and eye size in five European bat species in relation to foraging and migration strategies. Environmental and Experimental Biology, 12, 1–6. Eklöf, J., & uba J, Petersons G, Rydell J., (2014). Visual acuity and eye size in five European bat species in relation to foraging and migration strategies. Environmental and Experimental Biology, 12, 1–6.
31.
go back to reference Falk, D. (1990). Brain evolution in Homo: The ’radiator’ theory. Behavioral and Brain Sciences, 13, 333–344.CrossRef Falk, D. (1990). Brain evolution in Homo: The ’radiator’ theory. Behavioral and Brain Sciences, 13, 333–344.CrossRef
33.
go back to reference Frank, B. M., & Baret, P. V. (2013). Simulating brown trout demogenetics in a river/nursery brook system: The individual-based model DemGenTrout. Ecological modelling, 248, 184–202.CrossRef Frank, B. M., & Baret, P. V. (2013). Simulating brown trout demogenetics in a river/nursery brook system: The individual-based model DemGenTrout. Ecological modelling, 248, 184–202.CrossRef
34.
go back to reference Frank, D., & Evans, R. (1997). Effects of native grazers on N cycling in a north-temperate grassland ecosystem: Yellowstone National Park. Ecology, 78, 2238–2249.CrossRef Frank, D., & Evans, R. (1997). Effects of native grazers on N cycling in a north-temperate grassland ecosystem: Yellowstone National Park. Ecology, 78, 2238–2249.CrossRef
35.
go back to reference Frank, D., & Groffman, P. (1998). Ungulate versus landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology, 79, 2229–2241.CrossRef Frank, D., & Groffman, P. (1998). Ungulate versus landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology, 79, 2229–2241.CrossRef
36.
go back to reference Friman, V. P., Hiltunen, T., Laakso, J., & Kaitala, V. (2008). Availability of prey resources drives evolution of predator-prey interaction. Proceedings of the Royal Society of London, 275, 1625–1633.CrossRef Friman, V. P., Hiltunen, T., Laakso, J., & Kaitala, V. (2008). Availability of prey resources drives evolution of predator-prey interaction. Proceedings of the Royal Society of London, 275, 1625–1633.CrossRef
37.
go back to reference Garamszegi, L. Z., Mller, A. P., & Erritzøe, J. (2002). Coevolving avian eye size and brain size in rela-tion to prey capture and nocturnality. Proceedings of the Royal Society of London, 269, 961–967.CrossRef Garamszegi, L. Z., Mller, A. P., & Erritzøe, J. (2002). Coevolving avian eye size and brain size in rela-tion to prey capture and nocturnality. Proceedings of the Royal Society of London, 269, 961–967.CrossRef
38.
go back to reference Gillooly, J. F., Allen, A. P., West, G. B., & Brown, J. H. (2005). The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences of the United States of America, 102, 140–145.CrossRef Gillooly, J. F., Allen, A. P., West, G. B., & Brown, J. H. (2005). The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences of the United States of America, 102, 140–145.CrossRef
40.
go back to reference Golestani, A., & Gras, R. (2010). Regularity analysis of an individual-based ecosystem simulation. Chaos, 20, 3120.CrossRef Golestani, A., & Gras, R. (2010). Regularity analysis of an individual-based ecosystem simulation. Chaos, 20, 3120.CrossRef
41.
go back to reference Golestani, A., & Gras, R. (2011). Multifractal phenomena in EcoSim, a large scale individual-based ecosystem simulation. In International Conference on Artificial Intelligence (pp. 991–999), Las Vegas. Golestani, A., & Gras, R. (2011). Multifractal phenomena in EcoSim, a large scale individual-based ecosystem simulation. In International Conference on Artificial Intelligence (pp. 991–999), Las Vegas.
42.
go back to reference Golestani, A., Gras, R. (2012). Identifying origin of self-similarity in EcoSim, an individual-based ecosystem simulation, using wavelet-based multifractal analysis. In Proceedings of the world congress on engineering and computer science 2012 (WCECS 2012) (pp. 1275–1285), San Francisco. Golestani, A., Gras, R. (2012). Identifying origin of self-similarity in EcoSim, an individual-based ecosystem simulation, using wavelet-based multifractal analysis. In Proceedings of the world congress on engineering and computer science 2012 (WCECS 2012) (pp. 1275–1285), San Francisco.
43.
go back to reference Golestani, A., Gras, R., & Cristescu, M. (2012). Speciation with gene flow in a heterogeneous virtual world: Can physical obstacles accelerate speciation? Proceedings of the Royal Society of London, 279, 3055–3064.CrossRef Golestani, A., Gras, R., & Cristescu, M. (2012). Speciation with gene flow in a heterogeneous virtual world: Can physical obstacles accelerate speciation? Proceedings of the Royal Society of London, 279, 3055–3064.CrossRef
44.
go back to reference Grant, P. R., & Grant, B. R. (2006). Evolution of character displacement in Darwin’s finches. Science, 313, 224–226.CrossRef Grant, P. R., & Grant, B. R. (2006). Evolution of character displacement in Darwin’s finches. Science, 313, 224–226.CrossRef
45.
go back to reference Gras, R., Devaurs, D., Wozniak, A., & Aspinall, A. (2009). An individual-based evolving predator-prey ecosystem simulation using a fuzzy cognitive map as the behavior model. Artif Life, 15, 423–463.CrossRef Gras, R., Devaurs, D., Wozniak, A., & Aspinall, A. (2009). An individual-based evolving predator-prey ecosystem simulation using a fuzzy cognitive map as the behavior model. Artif Life, 15, 423–463.CrossRef
47.
go back to reference Grimm, V., Berger, U., Bastiansen, F., et al. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198, 115–126.CrossRef Grimm, V., Berger, U., Bastiansen, F., et al. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198, 115–126.CrossRef
48.
go back to reference Grimm, V., Berger, U., DeAngelis, D. L., et al. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221, 2760–2768.CrossRef Grimm, V., Berger, U., DeAngelis, D. L., et al. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221, 2760–2768.CrossRef
49.
go back to reference Grimm, V., Augusiak, J., Focks, A., et al. (2014). Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE. Ecological Modelling, 280, 129–139.CrossRef Grimm, V., Augusiak, J., Focks, A., et al. (2014). Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE. Ecological Modelling, 280, 129–139.CrossRef
50.
go back to reference Hazlerigg, C. R. E., Tyler, C. R., Lorenzen, K., et al. (2014). Population relevance of toxicant mediated changes in sex ratio in fish: An assessment using an individual-based zebrafish (Danio rerio) model. Ecological Modelling, 280, 76–88.CrossRef Hazlerigg, C. R. E., Tyler, C. R., Lorenzen, K., et al. (2014). Population relevance of toxicant mediated changes in sex ratio in fish: An assessment using an individual-based zebrafish (Danio rerio) model. Ecological Modelling, 280, 76–88.CrossRef
51.
go back to reference Hamilton, E., & Frank, D. (2001). Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 82, 2397–2402.CrossRef Hamilton, E., & Frank, D. (2001). Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 82, 2397–2402.CrossRef
52.
go back to reference Hartl, D. L., & Jones, E. W. (2004). Genetics: Analysis of genes and genomes. Burlington: Jones & Bartlett Publishers. Hartl, D. L., & Jones, E. W. (2004). Genetics: Analysis of genes and genomes. Burlington: Jones & Bartlett Publishers.
53.
go back to reference Hemmingsen, A. M. (1960). Energy metabolism as related to body size and respiratory surfaces, and its evolution. Reports of the Steno Memorial Hospital and Nordisk Insulin Laboratorium, 9, 1–110. Hemmingsen, A. M. (1960). Energy metabolism as related to body size and respiratory surfaces, and its evolution. Reports of the Steno Memorial Hospital and Nordisk Insulin Laboratorium, 9, 1–110.
54.
go back to reference Hik, D. S., & Jefferies, R. L. (1990). Increases in the net aboveground primary production of a salt-marsh forage grass: A test of the predictions of the herbivore-optimization model. The Journal of Ecology, 78, 180–195.CrossRef Hik, D. S., & Jefferies, R. L. (1990). Increases in the net aboveground primary production of a salt-marsh forage grass: A test of the predictions of the herbivore-optimization model. The Journal of Ecology, 78, 180–195.CrossRef
56.
go back to reference Hobbs, N. T. (1996). Modification of ecosystems by ungulates. The Journal of Wildlife Management, 60, 695–713.CrossRef Hobbs, N. T. (1996). Modification of ecosystems by ungulates. The Journal of Wildlife Management, 60, 695–713.CrossRef
57.
go back to reference Hoskin, C. J., Higgie, M., McDonald, K. R., & Moritz, C. (2005). Reinforcement drives rapid allopatric speciation. Nature, 437, 1353.CrossRef Hoskin, C. J., Higgie, M., McDonald, K. R., & Moritz, C. (2005). Reinforcement drives rapid allopatric speciation. Nature, 437, 1353.CrossRef
58.
go back to reference Hraber, P. T., Jones, T., & Forrest, S. (1997). The ecology of Echo. Artificial Life, 3, 165–190.CrossRef Hraber, P. T., Jones, T., & Forrest, S. (1997). The ecology of Echo. Artificial Life, 3, 165–190.CrossRef
59.
go back to reference Jasienska, G. (2003). Energy metabolism and the evolution of reproductive suppression in the human female. Acta Biotheoretica, 51, 1–8.CrossRef Jasienska, G. (2003). Energy metabolism and the evolution of reproductive suppression in the human female. Acta Biotheoretica, 51, 1–8.CrossRef
60.
go back to reference Kantz, H., & Schreiber, T. (1997). Nonlinear Time Series Analysis. Cambridge: Cambridge University Press.MATH Kantz, H., & Schreiber, T. (1997). Nonlinear Time Series Analysis. Cambridge: Cambridge University Press.MATH
61.
go back to reference Khater, M., Murariu, D., & Gras, R. (2014). Contemporary evolution and genetic change of prey as a response to predator removal. Ecological Informatics, 22, 13–22.CrossRef Khater, M., Murariu, D., & Gras, R. (2014). Contemporary evolution and genetic change of prey as a response to predator removal. Ecological Informatics, 22, 13–22.CrossRef
62.
go back to reference Khater, M., & Gras, R. (2012). Adaptation and genomic evolution in EcoSim. In T. Ziemke C. Balkenius, & J. Hallam (Eds) From Animals to Animats 12, Proceedings of the 12th International Conference on Simulation of Adaptive Behavior, SAB 2012, (pp. 219–229). Denmark: Odense. Khater, M., & Gras, R. (2012). Adaptation and genomic evolution in EcoSim. In T. Ziemke C. Balkenius, & J. Hallam (Eds) From Animals to Animats 12, Proceedings of the 12th International Conference on Simulation of Adaptive Behavior, SAB 2012, (pp. 219–229). Denmark: Odense.
63.
go back to reference Kiltie, R. A. (2000). Scaling of visual acuity with body size in mammals and birds. Functional Ecology, 14, 226–234.CrossRef Kiltie, R. A. (2000). Scaling of visual acuity with body size in mammals and birds. Functional Ecology, 14, 226–234.CrossRef
65.
go back to reference Kleiber, M. (1961). The fire of Life. An introduction to animal energetics. New York: Wiley. Kleiber, M. (1961). The fire of Life. An introduction to animal energetics. New York: Wiley.
66.
go back to reference Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-machine Studies, 24, 65–75.CrossRef Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-machine Studies, 24, 65–75.CrossRef
67.
go back to reference Krams, I., Krama, T., & Igaune, K. (2006). Mobbing behaviour: Reciprocity-based cooperation in breeding Pied Flycatchers Ficedula hypoleuca. IBIS, 148, 50–54.CrossRef Krams, I., Krama, T., & Igaune, K. (2006). Mobbing behaviour: Reciprocity-based cooperation in breeding Pied Flycatchers Ficedula hypoleuca. IBIS, 148, 50–54.CrossRef
68.
go back to reference Krams, I., Krama, T., Igaune, K., & Mnd, R. (2008). Experimental evidence of reciprocal altruism in the pied flycatcher. Behavioral Ecology and Sociobiology, 62, 599–605.CrossRef Krams, I., Krama, T., Igaune, K., & Mnd, R. (2008). Experimental evidence of reciprocal altruism in the pied flycatcher. Behavioral Ecology and Sociobiology, 62, 599–605.CrossRef
69.
go back to reference Krebs, J., & Davies, N. (1997). Behavioural Ecology: An evolutionary approach (4th ed.). Oxford: Blackwell Publishers. Krebs, J., & Davies, N. (1997). Behavioural Ecology: An evolutionary approach (4th ed.). Oxford: Blackwell Publishers.
70.
go back to reference Kvam, P., Cesario, J., & Schossau, J. et al. (2013). Computational Evolution of Decision-Making Strategies. In D. C. Noelle, R. Dale, & A. S. Warlaumont et al. (Eds.), Proceedings of the 37th Annual Conference of the Cognitive Science Society (pp. 1225-1230), Austin, TX. Kvam, P., Cesario, J., & Schossau, J. et al. (2013). Computational Evolution of Decision-Making Strategies. In D. C. Noelle, R. Dale, & A. S. Warlaumont et al. (Eds.), Proceedings of the 37th Annual Conference of the Cognitive Science Society (pp. 1225-1230), Austin, TX.
71.
go back to reference LaBar, T., Hintze, A., & Adami, C. (2016). Evolvability tradeoffs in emergent digital replicators. Artificial Life, 22, 483–498.CrossRef LaBar, T., Hintze, A., & Adami, C. (2016). Evolvability tradeoffs in emergent digital replicators. Artificial Life, 22, 483–498.CrossRef
72.
go back to reference Landguth, E. L., & Cushman, S. A. (2010). CDPOP: A spatially explicit cost distance population genetics program. Molecular Ecology Resources, 10, 156–161.CrossRef Landguth, E. L., & Cushman, S. A. (2010). CDPOP: A spatially explicit cost distance population genetics program. Molecular Ecology Resources, 10, 156–161.CrossRef
73.
go back to reference Landguth, E. L., Bearlin, A., Day, C. C., & Dunham, J. (2017). CDMetaPOP: An individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics. Methods in Ecology and Evolution, 8, 4–11.CrossRef Landguth, E. L., Bearlin, A., Day, C. C., & Dunham, J. (2017). CDMetaPOP: An individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics. Methods in Ecology and Evolution, 8, 4–11.CrossRef
74.
go back to reference Lenski, R. E., Ofria, C., Collier, T. C., & Adami, C. (1999). Genome complexity, robustness and genetic interactions in digital organisms. Nature, 400, 661–664.CrossRef Lenski, R. E., Ofria, C., Collier, T. C., & Adami, C. (1999). Genome complexity, robustness and genetic interactions in digital organisms. Nature, 400, 661–664.CrossRef
75.
go back to reference Lenski, R. E., Ofria, C., Pennock, R. T., & Adami, C. (2003). The Evolutionary Origin of Complex Features. Nature, 423, 139–144.CrossRef Lenski, R. E., Ofria, C., Pennock, R. T., & Adami, C. (2003). The Evolutionary Origin of Complex Features. Nature, 423, 139–144.CrossRef
76.
go back to reference Lewis, R. J., & Kappler, P. M. (2005). Seasonality, body condition, and timing of reproduction in Propithecus verreauxi verreauxi in the Kirindy Forest. Journal of the American Society of Primatologists, 67, 347–364. Lewis, R. J., & Kappler, P. M. (2005). Seasonality, body condition, and timing of reproduction in Propithecus verreauxi verreauxi in the Kirindy Forest. Journal of the American Society of Primatologists, 67, 347–364.
78.
go back to reference Leonard, W. R., & Ulijaszek, S. J. (2002). Energetics and evolution: An emerging research domain. American Journal of Human Biology, 14, 547–550.CrossRef Leonard, W. R., & Ulijaszek, S. J. (2002). Energetics and evolution: An emerging research domain. American Journal of Human Biology, 14, 547–550.CrossRef
79.
go back to reference MacPherson, B., & Gras, R. (2016). Individual-based ecological models: Adjunctive tools or experimental systems? Ecological Modelling, 323, 106–114.CrossRef MacPherson, B., & Gras, R. (2016). Individual-based ecological models: Adjunctive tools or experimental systems? Ecological Modelling, 323, 106–114.CrossRef
80.
go back to reference Mallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10, 294–299.CrossRef Mallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10, 294–299.CrossRef
81.
go back to reference Marini, G., Guzzetta, G., Baldacchino, F., et al. (2017). The effect of interspecific competition on the temporal dynamics of Aedes albopictus and Culex pipiens. Parasites & vectors, 10, 102. Marini, G., Guzzetta, G., Baldacchino, F., et al. (2017). The effect of interspecific competition on the temporal dynamics of Aedes albopictus and Culex pipiens. Parasites & vectors, 10, 102.
82.
go back to reference Marshall, J. A. (2016). What is inclusive fitness theory, and what is it for? Current Opinion in Behavioral Sciences, 12, 103–108.CrossRef Marshall, J. A. (2016). What is inclusive fitness theory, and what is it for? Current Opinion in Behavioral Sciences, 12, 103–108.CrossRef
83.
go back to reference Mashayekhi, M., & Gras, R. (2012). Investigating the effect of spatial distribution and spatiotemporal information on speciation using individual-based ecosystem simulation. GSTF Journal on Computing, 2, 98–103. Mashayekhi, M., & Gras, R. (2012). Investigating the effect of spatial distribution and spatiotemporal information on speciation using individual-based ecosystem simulation. GSTF Journal on Computing, 2, 98–103.
84.
go back to reference Mashayekhi, M., MacPherson, B., & Gras, R. (2014). Species-area relationship and a tentative interpretation of the function coefficients in an ecosystem simulation. Ecological Complexity, 19, 84–95.CrossRef Mashayekhi, M., MacPherson, B., & Gras, R. (2014). Species-area relationship and a tentative interpretation of the function coefficients in an ecosystem simulation. Ecological Complexity, 19, 84–95.CrossRef
85.
go back to reference Mashayekhi, M., MacPherson, B., & Gras, R. (2014). A machine learning approach to investigate the reasons behind species extinction. Ecological Informatics, 20, 58–66.CrossRef Mashayekhi, M., MacPherson, B., & Gras, R. (2014). A machine learning approach to investigate the reasons behind species extinction. Ecological Informatics, 20, 58–66.CrossRef
86.
go back to reference McNab, B. K. (2002). Minimizing energy expenditure facilitates vertebrate persistence on oceanic islands. Ecology Letters, 5, 693–704.CrossRef McNab, B. K. (2002). Minimizing energy expenditure facilitates vertebrate persistence on oceanic islands. Ecology Letters, 5, 693–704.CrossRef
87.
go back to reference Mech, S. G., & Zollner, P. A. (2002). Using body size to predict perceptual range. Oikos, 98, 47–52.CrossRef Mech, S. G., & Zollner, P. A. (2002). Using body size to predict perceptual range. Oikos, 98, 47–52.CrossRef
88.
go back to reference Møller, A. P. (2009). Basal metabolic rate and risk-taking behaviour in birds. Journal of Evolutionary Biology, 22, 2420–2429.CrossRef Møller, A. P. (2009). Basal metabolic rate and risk-taking behaviour in birds. Journal of Evolutionary Biology, 22, 2420–2429.CrossRef
89.
go back to reference Molvar, E. M., Bowyer, R. T., & Van Ballenberghe, V. (1993). Moose herbivory, browse quality, and nutrient cycling in an Alaskan treeline community. Oecol, 94, 473–479.CrossRef Molvar, E. M., Bowyer, R. T., & Van Ballenberghe, V. (1993). Moose herbivory, browse quality, and nutrient cycling in an Alaskan treeline community. Oecol, 94, 473–479.CrossRef
90.
go back to reference Mönkkönen, M., Forsman, J. T., & Bokma, F. (2006). Energy availability, abundance, energy-use and species richness in forest bird communities: A test of the species-energy theory. Global Ecology and Biogeography, 15, 290–302. Mönkkönen, M., Forsman, J. T., & Bokma, F. (2006). Energy availability, abundance, energy-use and species richness in forest bird communities: A test of the species-energy theory. Global Ecology and Biogeography, 15, 290–302.
91.
go back to reference Mueller, P., & Diamond, J. (2001). Metabolic rate and environmental productivity: Well-provisioned animals evolved to run and idle fast. Proceedings of the National Academy of Sciences USA, 98, 12550–12554.CrossRef Mueller, P., & Diamond, J. (2001). Metabolic rate and environmental productivity: Well-provisioned animals evolved to run and idle fast. Proceedings of the National Academy of Sciences USA, 98, 12550–12554.CrossRef
92.
go back to reference Nagy, K. A. (2005). Field metabolic rate and body size. Journal of Experimental Biology, 208, 1621–1625.CrossRef Nagy, K. A. (2005). Field metabolic rate and body size. Journal of Experimental Biology, 208, 1621–1625.CrossRef
93.
go back to reference Navarrete, A., van Schaik, C. P., & Isler, K. (2011). Energetics and the evolution of human brain size. Nature, 480, 91.CrossRef Navarrete, A., van Schaik, C. P., & Isler, K. (2011). Energetics and the evolution of human brain size. Nature, 480, 91.CrossRef
94.
go back to reference Niklas, K. J., & Enquist, B. J. (2001). Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences USA, 98, 2922–2927.CrossRef Niklas, K. J., & Enquist, B. J. (2001). Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences USA, 98, 2922–2927.CrossRef
95.
go back to reference Niven, J. E., & Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211, 1792–1804.CrossRef Niven, J. E., & Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211, 1792–1804.CrossRef
96.
go back to reference Nowak, M. A., Tarnita, C. E., & Wilson, E. O. (2010). The evolution of eusociality. Nature, 466, 1057–1062.CrossRef Nowak, M. A., Tarnita, C. E., & Wilson, E. O. (2010). The evolution of eusociality. Nature, 466, 1057–1062.CrossRef
97.
go back to reference Ofria, C., & Wilke, C. O. (2004). Avida: A software platform for research in computational evolutionary biology. Artificial Life, 10, 191–229.CrossRef Ofria, C., & Wilke, C. O. (2004). Avida: A software platform for research in computational evolutionary biology. Artificial Life, 10, 191–229.CrossRef
98.
go back to reference Olff, H., & Ritchie, M. E. (1998). Effects of herbivores on grassland plant diversity. Trends in Ecology & Evolution, 13, 261–265.CrossRef Olff, H., & Ritchie, M. E. (1998). Effects of herbivores on grassland plant diversity. Trends in Ecology & Evolution, 13, 261–265.CrossRef
101.
go back to reference Pafilis, P., Meiri, S., Foufopoulos, J., & Valakos, E. (2009). Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften, 96, 1107–13.CrossRef Pafilis, P., Meiri, S., Foufopoulos, J., & Valakos, E. (2009). Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften, 96, 1107–13.CrossRef
102.
go back to reference Pedley, T. J. (1977). Scale effects in animal locomotion. The Quarterly Review of Biology, 53, 473–474. Pedley, T. J. (1977). Scale effects in animal locomotion. The Quarterly Review of Biology, 53, 473–474.
103.
go back to reference Peters, R. H. (1986). The Ecological Implications of Body Size. Cambridge: Cambridge University Press. Peters, R. H. (1986). The Ecological Implications of Body Size. Cambridge: Cambridge University Press.
104.
go back to reference Pethybridge, H., Roos, D., Loizeau, V., et al. (2013). Responses of European anchovy vital rates and population growth to environmental fluctuations: An individual-based modeling approach. Ecological Modelling, 250, 370–383.CrossRef Pethybridge, H., Roos, D., Loizeau, V., et al. (2013). Responses of European anchovy vital rates and population growth to environmental fluctuations: An individual-based modeling approach. Ecological Modelling, 250, 370–383.CrossRef
105.
go back to reference Piana, P. A., Gomes, L. C., & Agostinho, A. A. (2006). Comparison of predator-prey interaction models for fish assemblages from the neotropical region. Ecological Modelling, 192, 259–270.CrossRef Piana, P. A., Gomes, L. C., & Agostinho, A. A. (2006). Comparison of predator-prey interaction models for fish assemblages from the neotropical region. Ecological Modelling, 192, 259–270.CrossRef
106.
go back to reference Potier, S., Bonadonna, F., Kelber, A., et al. (2016). Visual abilities in two raptors with different ecology. The Journal of Experimental Biology, 219, 2639–2649.CrossRef Potier, S., Bonadonna, F., Kelber, A., et al. (2016). Visual abilities in two raptors with different ecology. The Journal of Experimental Biology, 219, 2639–2649.CrossRef
107.
go back to reference Prothero, J. W. (1979). Maximal oxygen consumption in various animals and plants. Comparative Biochemistry and Physiology—Part A: Molecular & Integrative Physiology, 64, 463–466.CrossRef Prothero, J. W. (1979). Maximal oxygen consumption in various animals and plants. Comparative Biochemistry and Physiology—Part A: Molecular & Integrative Physiology, 64, 463–466.CrossRef
108.
go back to reference Ray, T.S. (1991). An approach to the synthesis of life. In C. Langton, C. Taylor, J.D. Farmer, & S. Ras-mussen (Eds.), Proceedings of Artificial Life II (pp. 371–408), Redwood City: Addison-Wesley Ray, T.S. (1991). An approach to the synthesis of life. In C. Langton, C. Taylor, J.D. Farmer, & S. Ras-mussen (Eds.), Proceedings of Artificial Life II (pp. 371–408), Redwood City: Addison-Wesley
109.
go back to reference Ricotta, C. (2000). From theoretical ecology to statistical physics and back: Self-similar landscape metrics as a synthesis of ecological diversity and geometrical complexity. Ecological Modelling, 125, 245–253.CrossRef Ricotta, C. (2000). From theoretical ecology to statistical physics and back: Self-similar landscape metrics as a synthesis of ecological diversity and geometrical complexity. Ecological Modelling, 125, 245–253.CrossRef
110.
go back to reference Rutowski, R. L., Gisln, L., & Warrant, E. J. (2009). Visual acuity and sensitivity increase allometrically with body size in butterflies. Arthropod Structure & Development, 38, 91–100.CrossRef Rutowski, R. L., Gisln, L., & Warrant, E. J. (2009). Visual acuity and sensitivity increase allometrically with body size in butterflies. Arthropod Structure & Development, 38, 91–100.CrossRef
111.
go back to reference Safi, K., Seid, M. A., & Dechmann, D. K. N. (2005). Bigger is not always better: when brains get smaller. Biology Letters, 1, 283–286.CrossRef Safi, K., Seid, M. A., & Dechmann, D. K. N. (2005). Bigger is not always better: when brains get smaller. Biology Letters, 1, 283–286.CrossRef
112.
go back to reference Schmidt-Nielsen, K. (1984). Scaling: Why is animal size so important?. Cambridge: Cambridge University Press.CrossRef Schmidt-Nielsen, K. (1984). Scaling: Why is animal size so important?. Cambridge: Cambridge University Press.CrossRef
113.
go back to reference Schmolke, A., Thorbek, P., DeAngelis, D. L., & Grimm, V. (2010). Ecological models supporting environmental decision making: A strategy for the future. Trends Ecology Evolution, 25, 479–486.CrossRef Schmolke, A., Thorbek, P., DeAngelis, D. L., & Grimm, V. (2010). Ecological models supporting environmental decision making: A strategy for the future. Trends Ecology Evolution, 25, 479–486.CrossRef
114.
go back to reference Seuront, L., Schmitt, F., Lagadeuc, Y., et al. (1996). Multifractal analysis of phytoplankton biomass and temperature in the ocean. Geophysical Research Letters, 23, 3591–3594.CrossRef Seuront, L., Schmitt, F., Lagadeuc, Y., et al. (1996). Multifractal analysis of phytoplankton biomass and temperature in the ocean. Geophysical Research Letters, 23, 3591–3594.CrossRef
115.
go back to reference Shepherd, G. M. (1994). Neurobiology. Oxford: Oxford University Press. Shepherd, G. M. (1994). Neurobiology. Oxford: Oxford University Press.
116.
go back to reference Stahl, W. R. R. (1965). Organ weights in primates and other mammals. Science, 150, 1039–1042.CrossRef Stahl, W. R. R. (1965). Organ weights in primates and other mammals. Science, 150, 1039–1042.CrossRef
117.
go back to reference Stahl, W. R. R. (1967). Scaling of respiratory variables in mammals. Journal of Applied Physiology, 22, 453–460.CrossRef Stahl, W. R. R. (1967). Scaling of respiratory variables in mammals. Journal of Applied Physiology, 22, 453–460.CrossRef
118.
go back to reference Stephens, D., & Krebs, J. (1986). Foraging theory. Princeton: Princeton University Press. Stephens, D., & Krebs, J. (1986). Foraging theory. Princeton: Princeton University Press.
119.
go back to reference Strauss, S. Y., Lau, J. A., & Carroll, S. P. (2006). Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Ecology Letters, 9, 357–374.CrossRef Strauss, S. Y., Lau, J. A., & Carroll, S. P. (2006). Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Ecology Letters, 9, 357–374.CrossRef
120.
go back to reference Svanbck, R., & Bolnick, D. I. (2007). Intraspecific competition drives increased resource use diversity within a natural population. Proceedings of the Royal Society of London, 274, 839–844.CrossRef Svanbck, R., & Bolnick, D. I. (2007). Intraspecific competition drives increased resource use diversity within a natural population. Proceedings of the Royal Society of London, 274, 839–844.CrossRef
121.
go back to reference Svanbck, R., Eklöv, P., Fransson, R., & Holmgren, K. (2008). Intraspecific competition drives multiple species resource polymorphism in fish communities. Oikos, 117, 114–124.CrossRef Svanbck, R., Eklöv, P., Fransson, R., & Holmgren, K. (2008). Intraspecific competition drives multiple species resource polymorphism in fish communities. Oikos, 117, 114–124.CrossRef
122.
go back to reference Thearling, K., & Ray, T. (1994). Evolving multi-cellular artificial life. In P. Maes (Ed.), Brooks RA (pp. 283–288). MIT Press, Cambridge p: Proceedings of Artificial Life IV. Thearling, K., & Ray, T. (1994). Evolving multi-cellular artificial life. In P. Maes (Ed.), Brooks RA (pp. 283–288). MIT Press, Cambridge p: Proceedings of Artificial Life IV.
124.
go back to reference Uchmaski, J. (2016). Individual variability and metapopulation dynamics: An individual-based model. Ecological Modelling, 334, 8–18.CrossRef Uchmaski, J. (2016). Individual variability and metapopulation dynamics: An individual-based model. Ecological Modelling, 334, 8–18.CrossRef
125.
go back to reference Van der Wal, R., Bardgett, R. D., Harrison, K. A., & Stien, A. (2004). Vertebrate herbivores and ecosystem control: Cascading effects of faeces on tundra ecosystems. Ecography, 27, 242–252.CrossRef Van der Wal, R., Bardgett, R. D., Harrison, K. A., & Stien, A. (2004). Vertebrate herbivores and ecosystem control: Cascading effects of faeces on tundra ecosystems. Ecography, 27, 242–252.CrossRef
126.
go back to reference Wardle, D. A. (2002). Communities and Ecosystems: Linking Aboveground and Belowground Components. Princeton: Princeton University Press. Wardle, D. A. (2002). Communities and Ecosystems: Linking Aboveground and Belowground Components. Princeton: Princeton University Press.
127.
go back to reference Wheeler, P.E. (1984). An investigation of some aspects of the transition from ectothermic to endothermic metabolism in vertebrates. Durham University. Wheeler, P.E. (1984). An investigation of some aspects of the transition from ectothermic to endothermic metabolism in vertebrates. Durham University.
129.
go back to reference Yaeger, L. (1994). Computational genetics, physiology, metabolism, neural systems, learning, vision, and behavior or PolyWorld: life in a new context. In Proceedings of Artificial Life III, Santa Fe Institute Studies in the Sciences of Complexity (Vol. 17, pp. 263–298), Redwood City: Addison-Wesley. Yaeger, L. (1994). Computational genetics, physiology, metabolism, neural systems, learning, vision, and behavior or PolyWorld: life in a new context. In Proceedings of Artificial Life III, Santa Fe Institute Studies in the Sciences of Complexity (Vol. 17, pp. 263–298), Redwood City: Addison-Wesley.
Metadata
Title
EcoSim, an Enhanced Artificial Ecosystem: Addressing Deeper Behavioral, Ecological, and Evolutionary Questions
Authors
Ryan Scott
Brian MacPherson
Robin Gras
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-97550-4_14