Skip to main content
Top
Published in: Wireless Personal Communications 1/2019

16-05-2019

EETC: Energy Efficient Tree-Clustering in Delay Constrained Wireless Sensor Network

Authors: Srijit Chowdhury, Chandan Giri

Published in: Wireless Personal Communications | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Joint employment of multi-hop data forwarding and mobile data-collector is a popular technique for efficient data collection in energy constraint and delay sensitive wireless sensor networks (WSNs). Existing tree-based data forwarding methods take the joint advantages of clustering and multi-hop data forwarding. However, the performances of all these approaches hardly meet the desired level of efficiency and thus, finding an efficient tree-clustering method to save network energy and extending the network lifetime is still a relevant issue in WSN. In this work, we study the problem of multi-hop data forwarding and propose a novel tree-clustering scheme named energy efficient tree clustering (EETC) which minimizes network energy consumption and extend the network lifetime while maintaining a pre-bound tour delay of the mobile sink. EETC uses a heuristic clustering algorithm named Optimal Generation of Clusters (OGENCL) in the clustering phase. In the proposed method, the number of relay hops between a cluster member node and the CH has been restricted to balance the network load. For further balancing the network load, we use an upper bound on the cluster size. The OGENCL problem is formulated as a Mixed Integer Linear Programming (MILP) Problem. Extensive simulations have been performed and compared with existing works to show the effectiveness of the proposed scheme for network load balance, energy consumption and network lifetime.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Al-Ma’aqbeh, F., Banimelhem, O., Taqieddin, E., Awad, F., & Mowafi, M. (2012). Fuzzy logic based energy efficient adaptive clustering protocol. In Proceedings of the 3rd international conference on information and communication systems, ICICS ’12 (pp. 21:1–21:5). New York, NY: ACM. Al-Ma’aqbeh, F., Banimelhem, O., Taqieddin, E., Awad, F., & Mowafi, M. (2012). Fuzzy logic based energy efficient adaptive clustering protocol. In Proceedings of the 3rd international conference on information and communication systems, ICICS ’12 (pp. 21:1–21:5). New York, NY: ACM.
2.
go back to reference Almi’ani, K., Viglas, A., & Libman, L. (2010). Energy-efficient data gathering with tour length-constrained mobile elements in wireless sensor networks. In IEEE local computer network conference (pp. 582–589). Almi’ani, K., Viglas, A., & Libman, L. (2010). Energy-efficient data gathering with tour length-constrained mobile elements in wireless sensor networks. In IEEE local computer network conference (pp. 582–589).
3.
go back to reference Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2007). The traveling salesman problem: A computational study (Princeton series in applied mathematics). Princeton, NJ: Princeton University Press. Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2007). The traveling salesman problem: A computational study (Princeton series in applied mathematics). Princeton, NJ: Princeton University Press.
4.
go back to reference Atoui, I., Ahmad, A., Medlej, M., Makhoul, A., Tawbe, S., & Hijazi, A. (2016). Tree-based data aggregation approach in wireless sensor network using fitting functions. In 2016 Sixth international conference on digital information processing and communications (ICDIPC) (pp. 146–150). Atoui, I., Ahmad, A., Medlej, M., Makhoul, A., Tawbe, S., & Hijazi, A. (2016). Tree-based data aggregation approach in wireless sensor network using fitting functions. In 2016 Sixth international conference on digital information processing and communications (ICDIPC) (pp. 146–150).
5.
go back to reference Chang, J.-Y., & Ju, P.-H. (2012). An efficient cluster-based power saving scheme for wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1–10.MathSciNetCrossRef Chang, J.-Y., & Ju, P.-H. (2012). An efficient cluster-based power saving scheme for wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1–10.MathSciNetCrossRef
6.
go back to reference Chang, J. Y., & Shen, T. H. (2016). An efficient tree-based power saving scheme for wireless sensor networks with mobile sink. IEEE Sensors Journal, 16(20), 7545–7557.CrossRef Chang, J. Y., & Shen, T. H. (2016). An efficient tree-based power saving scheme for wireless sensor networks with mobile sink. IEEE Sensors Journal, 16(20), 7545–7557.CrossRef
7.
go back to reference Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2013). Introduction to algorithms (3rd ed.). Cambridge: MIT Press.MATH Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2013). Introduction to algorithms (3rd ed.). Cambridge: MIT Press.MATH
9.
go back to reference Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network aggregation techniques for wireless sensor networks: A survey. IEEE Wireless Communications, 14(2), 70–87.CrossRef Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network aggregation techniques for wireless sensor networks: A survey. IEEE Wireless Communications, 14(2), 70–87.CrossRef
10.
go back to reference Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef
11.
go back to reference Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences, 2000. (10–pp.). Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences, 2000. (10–pp.).
12.
go back to reference Jamalabdollahi, M., & Zekavat, S. A. R. (2015). Joint neighbor discovery and time of arrival estimation in wireless sensor networks via OFDMA. IEEE Sensors Journal, 15(10), 5821–5833.CrossRef Jamalabdollahi, M., & Zekavat, S. A. R. (2015). Joint neighbor discovery and time of arrival estimation in wireless sensor networks via OFDMA. IEEE Sensors Journal, 15(10), 5821–5833.CrossRef
13.
go back to reference Jia, D., Zhu, H., Zou, S., & Hu, P. (2016). Dynamic cluster head selection method for wireless sensor network. IEEE Sensors Journal, 16(8), 2746–2754.CrossRef Jia, D., Zhu, H., Zou, S., & Hu, P. (2016). Dynamic cluster head selection method for wireless sensor network. IEEE Sensors Journal, 16(8), 2746–2754.CrossRef
14.
go back to reference Khan, A. W., Abdullah, A. H., Razzaque, M. A., & Bangash, J. I. (2015). VGDRA: A virtual grid-based dynamic routes adjustment scheme for mobile sink-based wireless sensor networks. IEEE Sensors Journal, 15(1), 526–534.CrossRef Khan, A. W., Abdullah, A. H., Razzaque, M. A., & Bangash, J. I. (2015). VGDRA: A virtual grid-based dynamic routes adjustment scheme for mobile sink-based wireless sensor networks. IEEE Sensors Journal, 15(1), 526–534.CrossRef
15.
go back to reference Khodashahi, M. H., Tashtarian, F., Moghaddam, M. H. Yaghmaee, & Honary, M. T. (2010). Optimal location for mobile sink in wireless sensor networks. In 2010 IEEE wireless communication and networking conference (pp. 1–6). Khodashahi, M. H., Tashtarian, F., Moghaddam, M. H. Yaghmaee, & Honary, M. T. (2010). Optimal location for mobile sink in wireless sensor networks. In 2010 IEEE wireless communication and networking conference (pp. 1–6).
16.
go back to reference Lin, Y. C., & Zhong, J. H. (2012). Hilbert-chain topology for energy conservation in large-scale wireless sensor networks. In 2012 9th International conference on ubiquitous intelligence and computing and 9th International conference on autonomic and trusted computing (pp. 225–232). Lin, Y. C., & Zhong, J. H. (2012). Hilbert-chain topology for energy conservation in large-scale wireless sensor networks. In 2012 9th International conference on ubiquitous intelligence and computing and 9th International conference on autonomic and trusted computing (pp. 225–232).
17.
go back to reference Lindsey, S., & Raghavendra, C. S. (2002). Pegasis: Power-efficient gathering in sensor information systems. In Aerospace conference proceedings, 2002 (Vol. 3, pp. 3-1125–3-1130 ). IEEE. Lindsey, S., & Raghavendra, C. S. (2002). Pegasis: Power-efficient gathering in sensor information systems. In Aerospace conference proceedings, 2002 (Vol. 3, pp. 3-1125–3-1130 ). IEEE.
18.
go back to reference Ma, M., & Yang, Y. (2007). Sencar: An energy-efficient data gathering mechanism for large-scale multihop sensor networks. IEEE Transactions on Parallel and Distributed Systems, 18(10), 1476–1488.CrossRef Ma, M., & Yang, Y. (2007). Sencar: An energy-efficient data gathering mechanism for large-scale multihop sensor networks. IEEE Transactions on Parallel and Distributed Systems, 18(10), 1476–1488.CrossRef
19.
go back to reference Nayak, P., & Devulapalli, A. (2016). A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime. IEEE Sensors Journal, 16(1), 137–144.CrossRef Nayak, P., & Devulapalli, A. (2016). A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime. IEEE Sensors Journal, 16(1), 137–144.CrossRef
20.
go back to reference Salarian, H., Chin, K. W., & Naghdy, F. (2014). An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Transactions on Vehicular Technology, 63(5), 2407–2419.CrossRef Salarian, H., Chin, K. W., & Naghdy, F. (2014). An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Transactions on Vehicular Technology, 63(5), 2407–2419.CrossRef
21.
go back to reference Shuai, T.-P., & Hu, X.-D. (2006). Connected Set Cover Problem and Its Applications (pp. 243–254). Berlin: Springer.MATH Shuai, T.-P., & Hu, X.-D. (2006). Connected Set Cover Problem and Its Applications (pp. 243–254). Berlin: Springer.MATH
22.
go back to reference Tan, H. Ö., & Körpeoǧlu, I. (2003). Power efficient data gathering and aggregation in wireless sensor networks. SIGMOD Record, 32(4), 66–71.CrossRef Tan, H. Ö., & Körpeoǧlu, I. (2003). Power efficient data gathering and aggregation in wireless sensor networks. SIGMOD Record, 32(4), 66–71.CrossRef
23.
go back to reference Tong, M., & Tang, M. (2010). Leach-b: An improved leach protocol for wireless sensor network. In 2010 6th International conference on wireless communications networking and mobile computing (WiCOM) (pp. 1–4). Tong, M., & Tang, M. (2010). Leach-b: An improved leach protocol for wireless sensor network. In 2010 6th International conference on wireless communications networking and mobile computing (WiCOM) (pp. 1–4).
24.
go back to reference Velmani, R., & Kaarthick, B. (2015). An efficient cluster-tree based data collection scheme for large mobile wireless sensor networks. IEEE Sensors Journal, 15(4), 2377–2390.CrossRef Velmani, R., & Kaarthick, B. (2015). An efficient cluster-tree based data collection scheme for large mobile wireless sensor networks. IEEE Sensors Journal, 15(4), 2377–2390.CrossRef
25.
go back to reference Wang, J., Cao, Y., Li, B., Kim, H., & Lee, S. (2017). Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Generation Computer Systems, 76, 452–457. (Supplement C).CrossRef Wang, J., Cao, Y., Li, B., Kim, H., & Lee, S. (2017). Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Generation Computer Systems, 76, 452–457. (Supplement C).CrossRef
26.
go back to reference Wang, W., Du, F., & Xu, Q. (2009). An improvement of leach routing protocol based on trust for wireless sensor networks. In 2009 5th International conference on wireless communications, networking and mobile computing (pp. 1–4). Wang, W., Du, F., & Xu, Q. (2009). An improvement of leach routing protocol based on trust for wireless sensor networks. In 2009 5th International conference on wireless communications, networking and mobile computing (pp. 1–4).
27.
go back to reference Xing, G., Wang, T., Xie, Z., & Jia, W. (2008). Rendezvous planning in wireless sensor networks with mobile elements. IEEE Transactions on Mobile Computing, 7(12), 1430–1443.CrossRef Xing, G., Wang, T., Xie, Z., & Jia, W. (2008). Rendezvous planning in wireless sensor networks with mobile elements. IEEE Transactions on Mobile Computing, 7(12), 1430–1443.CrossRef
28.
go back to reference Xing, G., Wang, T., Jia, W., & Li, M. (2008). Rendezvous design algorithms for wireless sensor networks with a mobile base station. In Proceedings of the 9th ACM international symposium on mobile ad hoc networking and computing, MobiHoc ’08 (pp. 231–240). New York, NY: ACM. Xing, G., Wang, T., Jia, W., & Li, M. (2008). Rendezvous design algorithms for wireless sensor networks with a mobile base station. In Proceedings of the 9th ACM international symposium on mobile ad hoc networking and computing, MobiHoc ’08 (pp. 231–240). New York, NY: ACM.
29.
go back to reference Yang, J., Shi, X., Marchese, M., & Liang, Y. (2008). An ant colony optimization method for generalized TSP problem. Progress in Natural Science, 18(11), 1417–1422.MathSciNetCrossRef Yang, J., Shi, X., Marchese, M., & Liang, Y. (2008). An ant colony optimization method for generalized TSP problem. Progress in Natural Science, 18(11), 1417–1422.MathSciNetCrossRef
30.
go back to reference Yuan, F., Zhan, Y., & Wang, Y. (2014). Data density correlation degree clustering method for data aggregation in WSN. IEEE Sensors Journal, 14(4), 1089–1098.CrossRef Yuan, F., Zhan, Y., & Wang, Y. (2014). Data density correlation degree clustering method for data aggregation in WSN. IEEE Sensors Journal, 14(4), 1089–1098.CrossRef
31.
go back to reference Zhang, Z., Gao, X., & Weili, W. (2009). Algorithms for connected set cover problem and fault-tolerant connected set cover problem. Theoretical Computer Science, 410(8), 812–817.MathSciNetCrossRef Zhang, Z., Gao, X., & Weili, W. (2009). Algorithms for connected set cover problem and fault-tolerant connected set cover problem. Theoretical Computer Science, 410(8), 812–817.MathSciNetCrossRef
32.
go back to reference Zhao, F., Zhao, C., Wang, Y., Sun, X., & Jiang, T. (2010). An energy-saving cluster routing for wireless sensor networks with mobile sink. In 2010 international conference on Advanced Intelligence and Awarenss Internet (AIAI 2010) (pp. 113–117). Zhao, F., Zhao, C., Wang, Y., Sun, X., & Jiang, T. (2010). An energy-saving cluster routing for wireless sensor networks with mobile sink. In 2010 international conference on Advanced Intelligence and Awarenss Internet (AIAI 2010) (pp. 113–117).
33.
go back to reference Zhu, C., Wu, S., Han, G., Shu, L., & Wu, H. (2015). A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink. IEEE Access, 3, 381–396.CrossRef Zhu, C., Wu, S., Han, G., Shu, L., & Wu, H. (2015). A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink. IEEE Access, 3, 381–396.CrossRef
Metadata
Title
EETC: Energy Efficient Tree-Clustering in Delay Constrained Wireless Sensor Network
Authors
Srijit Chowdhury
Chandan Giri
Publication date
16-05-2019
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2019
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06559-9

Other articles of this Issue 1/2019

Wireless Personal Communications 1/2019 Go to the issue