Skip to main content
Top
Published in: International Journal of Material Forming 5/2023

01-09-2023 | Original Research

Effect of bending radius on deformation behavior of H62 brass tubes in a less constrained free bending process

Authors: Jiawei Jiang, Xunzhong Guo, Yizhou Shen, Yangjiangshan Xu, Zhen Wang, Huaguan Li, Jie Tao

Published in: International Journal of Material Forming | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Finite element method and bending experiments were carried out to survey the influence of bending radius on forming quality of H62 brass tubes in free bending process,which are widely used as key components of pipeline system in aerospace, aviation and automotive fields. Different bending radiuses ranged from 45 mm to 100 mm with an interval of 5 mm were employed to survey the forming defects. The results illustrated that both cross-section distortion and wall thickness variations at sections with angles in range of 10–20° and 160–170° were larger than other regions. The severe deformation behaviors usually occurred at the end of the tubes. Moreover, similar to the variation tendency of cross-section distortion, the changing of wall thickness decreases gradually with the increase of bending radius. Furthermore, the positions with the severer forming defects gradually moved towards to two terminals of the tubes with increasing bending radius. The variations of these deformation behaviors were mainly caused by the tangential stress and axial stress which were decomposed by an extra thrust introduced by the bending die. Based on the above force analysis and experimental results, the credible analytical equations were derived to quantify the effect of bending radius on forming precision during the practical bending process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xiao YH, Guo C, Guo XY (2011) Constitutive modeling of hot deformation behavior of H62 brass. Mater Sci Eng A 528(21):6510–6518CrossRef Xiao YH, Guo C, Guo XY (2011) Constitutive modeling of hot deformation behavior of H62 brass. Mater Sci Eng A 528(21):6510–6518CrossRef
2.
go back to reference Hashmi MSJ (2006) Aspects of tube and pipe manufacturing processes: meter to nanometer diameter. J Mater Process Technol 179(1–3):5–10CrossRef Hashmi MSJ (2006) Aspects of tube and pipe manufacturing processes: meter to nanometer diameter. J Mater Process Technol 179(1–3):5–10CrossRef
3.
go back to reference Guan Y, Pourboghrat F, Barlat F (2006) Finite element modeling of tube hydroforming of polycrystalline aluminum alloy extrusions. Int J Plasticity 22(12):2366–2393MATHCrossRef Guan Y, Pourboghrat F, Barlat F (2006) Finite element modeling of tube hydroforming of polycrystalline aluminum alloy extrusions. Int J Plasticity 22(12):2366–2393MATHCrossRef
4.
go back to reference Ahmetoglu M, Altan T (2000) Tube hydroforming: state-of-the-art and future trends. J Mater Process Technol 98(1):25–33CrossRef Ahmetoglu M, Altan T (2000) Tube hydroforming: state-of-the-art and future trends. J Mater Process Technol 98(1):25–33CrossRef
5.
go back to reference Zhan M, Zhai H, He Y (2012) Springback mechanism and compensation of cryogenic Ti alloy tube after numerically controlled bending. T Nonferr Metal Soc 22:s287–s293CrossRef Zhan M, Zhai H, He Y (2012) Springback mechanism and compensation of cryogenic Ti alloy tube after numerically controlled bending. T Nonferr Metal Soc 22:s287–s293CrossRef
6.
go back to reference Miller JE, Kyriakides S, Bastard AH (2001) On bend-stretch forming of aluminum extruded tubes - I: experiments. Int J Mech Sci 43(5):1283–1317MATHCrossRef Miller JE, Kyriakides S, Bastard AH (2001) On bend-stretch forming of aluminum extruded tubes - I: experiments. Int J Mech Sci 43(5):1283–1317MATHCrossRef
7.
go back to reference Miller JE, Kyriakides S, Corona E (2001) On bend-stretch forming of aluminum extruded tubes—II: analysis. Int J Mech Sci 43(5):1319–1338MATHCrossRef Miller JE, Kyriakides S, Corona E (2001) On bend-stretch forming of aluminum extruded tubes—II: analysis. Int J Mech Sci 43(5):1319–1338MATHCrossRef
8.
go back to reference Corona E (2004) A simple analysis for bend-stretch forming of aluminum extrusions. Int J Mech Sci 46(3):433–448CrossRef Corona E (2004) A simple analysis for bend-stretch forming of aluminum extrusions. Int J Mech Sci 46(3):433–448CrossRef
9.
go back to reference Xue X, Liao J, Vincze G, Gracio JJ (2015) Modelling of mandrel rotary draw bending for accurate twist springback prediction of an asymmetric thin-walled tube. J Mater Process Technol 216:405–417CrossRef Xue X, Liao J, Vincze G, Gracio JJ (2015) Modelling of mandrel rotary draw bending for accurate twist springback prediction of an asymmetric thin-walled tube. J Mater Process Technol 216:405–417CrossRef
10.
go back to reference Shim DS, Kim KP, Lee KY (2016) Double-stage forming using critical pre-bending radius in roll bending of pipe with rectangular cross-section. J Mater Process Technol 236:189–203CrossRef Shim DS, Kim KP, Lee KY (2016) Double-stage forming using critical pre-bending radius in roll bending of pipe with rectangular cross-section. J Mater Process Technol 236:189–203CrossRef
11.
go back to reference Safari M, Farzin M (2014) A study on laser bending of tailor machined blanks with various irradiating schemes. J Mater Process Technol 214(1):112–122CrossRef Safari M, Farzin M (2014) A study on laser bending of tailor machined blanks with various irradiating schemes. J Mater Process Technol 214(1):112–122CrossRef
12.
go back to reference Yilamu K, Hino R, Hamasaki H, Yoshida F (2010) Air bending and springback of stainless steel clad aluminum sheet. J Mater Process Technol 210(2):272–278CrossRef Yilamu K, Hino R, Hamasaki H, Yoshida F (2010) Air bending and springback of stainless steel clad aluminum sheet. J Mater Process Technol 210(2):272–278CrossRef
13.
go back to reference Li H, Yang H, Yan J, Zhan M (2009) Numerical study on deformation behaviors of thin-walled tube NC bending with large diameter and small bending radius. Comput Mater Sci 45(4):921–934CrossRef Li H, Yang H, Yan J, Zhan M (2009) Numerical study on deformation behaviors of thin-walled tube NC bending with large diameter and small bending radius. Comput Mater Sci 45(4):921–934CrossRef
14.
go back to reference Li H, Yang H, Zhan M, Kou YL (2010) Deformation behaviors of thin-walled tube in rotary draw bending under push assistant loading conditions. J Mater Process Technol 210(1):143–158CrossRef Li H, Yang H, Zhan M, Kou YL (2010) Deformation behaviors of thin-walled tube in rotary draw bending under push assistant loading conditions. J Mater Process Technol 210(1):143–158CrossRef
15.
go back to reference He Y, Jing Y, Mei Z, Li H, Kou YL (2009) 3D numerical study on wrinkling characteristics in NC bending of aluminum alloy thin-walled tubes with large diameters under multi-die constraints. Comput Mater Sci 45(4):1052–1067CrossRef He Y, Jing Y, Mei Z, Li H, Kou YL (2009) 3D numerical study on wrinkling characteristics in NC bending of aluminum alloy thin-walled tubes with large diameters under multi-die constraints. Comput Mater Sci 45(4):1052–1067CrossRef
16.
go back to reference Chen J, Daxin E, Zhang J (2013) Effects of process parameters on wrinkling of thin-walled circular tube under rotary draw bending. Int J Adv Manuf Tech 68(5–8):1505–1516CrossRef Chen J, Daxin E, Zhang J (2013) Effects of process parameters on wrinkling of thin-walled circular tube under rotary draw bending. Int J Adv Manuf Tech 68(5–8):1505–1516CrossRef
17.
go back to reference Al-Qureshi HA (1999) Elastic-plastic analysis of tube bending. Int J Mach Tool Manu 39(1):87–104CrossRef Al-Qureshi HA (1999) Elastic-plastic analysis of tube bending. Int J Mach Tool Manu 39(1):87–104CrossRef
18.
go back to reference Kami A (2011) Prediction of wrinkling in thin-walled tube push-bending process using artificial neural network and finite element method. P I Mech Eng B-J Eng 225(10):1801–1812 Kami A (2011) Prediction of wrinkling in thin-walled tube push-bending process using artificial neural network and finite element method. P I Mech Eng B-J Eng 225(10):1801–1812
19.
go back to reference Song HW, Xie W, Zhang SH, Jiang W, Lăzărescu L, Banabic D (2021) Granular media filler assisted push bending method of thin-walled tubes with small bending radius. Int J Mech Sci 198:106365CrossRef Song HW, Xie W, Zhang SH, Jiang W, Lăzărescu L, Banabic D (2021) Granular media filler assisted push bending method of thin-walled tubes with small bending radius. Int J Mech Sci 198:106365CrossRef
20.
go back to reference Du B, Zhao CC, Dong GJ et al (2017) FEM-DEM coupling analysis for solid granule medium forming new technology. J Mater Process Technol 249:108–117CrossRef Du B, Zhao CC, Dong GJ et al (2017) FEM-DEM coupling analysis for solid granule medium forming new technology. J Mater Process Technol 249:108–117CrossRef
21.
go back to reference Chen H, Güner A, Khalifa NB, Tekkaya AE (2016) Granular media-based tube press hardening. J Mater Process Technol 228:145–159CrossRef Chen H, Güner A, Khalifa NB, Tekkaya AE (2016) Granular media-based tube press hardening. J Mater Process Technol 228:145–159CrossRef
22.
go back to reference Chen H, Hess S, Haeberle J, Pitikaris S, Born P, Güner A, Sperl M, Tekkaya AE (2016) Enhanced granular medium-based tube and hollow profile press hardening. CIRP Ann-Manuf Technol 65(1):273–276CrossRef Chen H, Hess S, Haeberle J, Pitikaris S, Born P, Güner A, Sperl M, Tekkaya AE (2016) Enhanced granular medium-based tube and hollow profile press hardening. CIRP Ann-Manuf Technol 65(1):273–276CrossRef
23.
go back to reference Dong GJ, Zhao CC, Peng YX, Li Y (2015) Hot granules medium pressure forming process of AA7075 conical parts. Chin J Mech Eng 28:580–591CrossRef Dong GJ, Zhao CC, Peng YX, Li Y (2015) Hot granules medium pressure forming process of AA7075 conical parts. Chin J Mech Eng 28:580–591CrossRef
24.
go back to reference Dong GJ, Bi J, Du B, Zhao CC (2017) Research on AA6061 tubular components prepared by combined technology of heat treatment and internal high pressure forming. J Mater Process Technol 242:126–138CrossRef Dong GJ, Bi J, Du B, Zhao CC (2017) Research on AA6061 tubular components prepared by combined technology of heat treatment and internal high pressure forming. J Mater Process Technol 242:126–138CrossRef
25.
go back to reference Jianjun WU, Zhang Z (2021) An improved procedure for manufacture of 3D tubes with springback concerned in flexible bending process. Chin J Aeronaut 34(11):267–276CrossRef Jianjun WU, Zhang Z (2021) An improved procedure for manufacture of 3D tubes with springback concerned in flexible bending process. Chin J Aeronaut 34(11):267–276CrossRef
26.
go back to reference He Y, Heng L, Zhang Z, Mei ZHAN, Jing LIU, Guangjun L (2012) Advances and trends on tube bending forming technologies. Chin J Aeronaut 25(1):1–12CrossRef He Y, Heng L, Zhang Z, Mei ZHAN, Jing LIU, Guangjun L (2012) Advances and trends on tube bending forming technologies. Chin J Aeronaut 25(1):1–12CrossRef
27.
go back to reference Ancellotti S, Fontanari V, Slaghenaufi S, Cortelletti E, Benedetti M (2019) Forming rectangular tubes into complicated 3D shapes by combining three-roll push bending, twisting and rotary draw bending: the role of the fabrication loading history on the mechanical response. Int J Mater Form 12:907–926CrossRef Ancellotti S, Fontanari V, Slaghenaufi S, Cortelletti E, Benedetti M (2019) Forming rectangular tubes into complicated 3D shapes by combining three-roll push bending, twisting and rotary draw bending: the role of the fabrication loading history on the mechanical response. Int J Mater Form 12:907–926CrossRef
28.
go back to reference Gantner P, Harrison DK, De Silva AKM, Bauer H (2004) New bending technologies for the automobile manufacturing industry. In: Proceedings of the 34th international MATADOR conference. Springer, London, pp 211–216CrossRef Gantner P, Harrison DK, De Silva AKM, Bauer H (2004) New bending technologies for the automobile manufacturing industry. In: Proceedings of the 34th international MATADOR conference. Springer, London, pp 211–216CrossRef
29.
go back to reference Li P, Wang L, Li M (2016) Flexible-bending of profiles with asymmetric cross-section and elimination of side bending defect. Int J Adv Manuf Tech 87(9–12):2853–2285CrossRef Li P, Wang L, Li M (2016) Flexible-bending of profiles with asymmetric cross-section and elimination of side bending defect. Int J Adv Manuf Tech 87(9–12):2853–2285CrossRef
30.
go back to reference Li H, Yang H, Zhang ZY et al (2014) Multiple instability-constrained tube bending limits. J Mater Process Technol 214(2):445–455CrossRef Li H, Yang H, Zhang ZY et al (2014) Multiple instability-constrained tube bending limits. J Mater Process Technol 214(2):445–455CrossRef
31.
go back to reference Zhu YX, Liu YL, Yang H et al (2013) Improvement of the accuracy and the computational efficiency of the springback prediction model for the rotary-draw bending of rectangular H96 tube. Int J Mech Sci 66:224–232CrossRef Zhu YX, Liu YL, Yang H et al (2013) Improvement of the accuracy and the computational efficiency of the springback prediction model for the rotary-draw bending of rectangular H96 tube. Int J Mech Sci 66:224–232CrossRef
32.
go back to reference Zhang Z, Wu J, Zhang S et al (2016) A new iterative method for springback control based on theory analysis and displacement adjustment. Int J Mech Sci 105:330–339CrossRef Zhang Z, Wu J, Zhang S et al (2016) A new iterative method for springback control based on theory analysis and displacement adjustment. Int J Mech Sci 105:330–339CrossRef
33.
go back to reference Murata M, Kuboki T (2015) CNC tube forming method for manufacturing flexibly and 3-dimensionally bent tubes [M]//60 excellent inventions in metal forming. Springer Vieweg, Berlin, Heidelberg, pp 363–368 Murata M, Kuboki T (2015) CNC tube forming method for manufacturing flexibly and 3-dimensionally bent tubes [M]//60 excellent inventions in metal forming. Springer Vieweg, Berlin, Heidelberg, pp 363–368
34.
go back to reference Guo X, Ma Y, Chen W et al (2018) Simulation and experimental research of the free bending process of a spatial tube. J Mater Process Technol 255:137–149CrossRef Guo X, Ma Y, Chen W et al (2018) Simulation and experimental research of the free bending process of a spatial tube. J Mater Process Technol 255:137–149CrossRef
35.
go back to reference Li P, Wang L, Li M (2017) Flexible-bending of profiles and tubes of continuous varying radii. Int J Adv Manuf Tech 88(5–8):1669–1675CrossRef Li P, Wang L, Li M (2017) Flexible-bending of profiles and tubes of continuous varying radii. Int J Adv Manuf Tech 88(5–8):1669–1675CrossRef
36.
go back to reference Gantner P, Bauer H, Harrison DK et al (2005) Free-bending —a new bending technique in the hydroforming process chain. J Mater Process Technol 167(2–3):302–308CrossRef Gantner P, Bauer H, Harrison DK et al (2005) Free-bending —a new bending technique in the hydroforming process chain. J Mater Process Technol 167(2–3):302–308CrossRef
37.
go back to reference Shimada N, Tomizawa A, Kubota H et al (2014) Development of three-dimensional hot bending and direct quench technology. Procedia Eng 81:2267–2272CrossRef Shimada N, Tomizawa A, Kubota H et al (2014) Development of three-dimensional hot bending and direct quench technology. Procedia Eng 81:2267–2272CrossRef
38.
go back to reference Chatti S, Hermes M, Tekkaya AE et al (2010) The new TSS bending process: 3D bending of profiles with arbitrary cross-sections. CIRP Ann 59(1):315–318CrossRef Chatti S, Hermes M, Tekkaya AE et al (2010) The new TSS bending process: 3D bending of profiles with arbitrary cross-sections. CIRP Ann 59(1):315–318CrossRef
39.
go back to reference Farina S, Gemignani R, Mentella A et al (2009) In: Tube free bending: a new index for the control of the cross section quality[C]//IX Convegno Associazione Italiana Tecnologia Meccanica AITEM. ITA,. p. 1–6 Farina S, Gemignani R, Mentella A et al (2009) In: Tube free bending: a new index for the control of the cross section quality[C]//IX Convegno Associazione Italiana Tecnologia Meccanica AITEM. ITA,. p. 1–6
40.
go back to reference Liu K, Liu Y, Yang H (2013) Experimental study on the effect of dies on wall thickness distribution in NC bending of thin-walled rectangular 3A21 aluminum alloy tube. Int J Adv Manuf Tech 68(5–8):1867–1874CrossRef Liu K, Liu Y, Yang H (2013) Experimental study on the effect of dies on wall thickness distribution in NC bending of thin-walled rectangular 3A21 aluminum alloy tube. Int J Adv Manuf Tech 68(5–8):1867–1874CrossRef
41.
go back to reference Goodarzi M, Kuboki T, Murata M (2005) Deformation analysis for the shear bending process of circular tubes. J Mater Process Technol 162:492–497CrossRef Goodarzi M, Kuboki T, Murata M (2005) Deformation analysis for the shear bending process of circular tubes. J Mater Process Technol 162:492–497CrossRef
42.
go back to reference Goodarzi M, Kuboki T, Murata M (2007) Effect of initial thickness on shear bending process of circular tubes. J Mater Process Technol 191(1–3):136–140CrossRef Goodarzi M, Kuboki T, Murata M (2007) Effect of initial thickness on shear bending process of circular tubes. J Mater Process Technol 191(1–3):136–140CrossRef
43.
go back to reference Goodarzi M, Kuboki T, Murata M (2007) Effect of die corner radius on the formability and dimensional accuracy of tube shear bending. Int J Adv Manuf Tech 35(1–2):66–74CrossRef Goodarzi M, Kuboki T, Murata M (2007) Effect of die corner radius on the formability and dimensional accuracy of tube shear bending. Int J Adv Manuf Tech 35(1–2):66–74CrossRef
44.
go back to reference Jiang Z, Mei Z, Yang H, Xu X, Li G (2011) Deformation behavior of medium-strength TA18 high-pressure tubes during NC bending with different bending radii. Chin J Aeronaut 24(5):657–664CrossRef Jiang Z, Mei Z, Yang H, Xu X, Li G (2011) Deformation behavior of medium-strength TA18 high-pressure tubes during NC bending with different bending radii. Chin J Aeronaut 24(5):657–664CrossRef
45.
go back to reference Liu KX, Zheng S, Zheng YS, Chen Y, He Y (2017) Plate assembly effect and cross-section distortion of rectangular tube in rotary draw bending. Int J Adv Manuf Tech 90(1–4):177–188CrossRef Liu KX, Zheng S, Zheng YS, Chen Y, He Y (2017) Plate assembly effect and cross-section distortion of rectangular tube in rotary draw bending. Int J Adv Manuf Tech 90(1–4):177–188CrossRef
46.
go back to reference Liu K, Liu Y, Yang H (2014) Experimental and FE simulation study on cross-section distortion of rectangular tube under multi-die constraints in rotary draw bending process. Int J Prec Eng Manuf 15(4):633–641CrossRef Liu K, Liu Y, Yang H (2014) Experimental and FE simulation study on cross-section distortion of rectangular tube under multi-die constraints in rotary draw bending process. Int J Prec Eng Manuf 15(4):633–641CrossRef
47.
go back to reference Xunzhong GUO, Xuan et al (2020) Finite element modelling and experimental investigation of the impact of filling different materials in copper tubes during 3D free bending process. Chin J Aeronaut 167(02):336–344 Xunzhong GUO, Xuan et al (2020) Finite element modelling and experimental investigation of the impact of filling different materials in copper tubes during 3D free bending process. Chin J Aeronaut 167(02):336–344
48.
go back to reference Wang X, Li F (2015) Analysis of wall thickness variation in the hydro-bending of a double-layered tube. Int J Adv Manuf Tech 81(1–4):67–72CrossRef Wang X, Li F (2015) Analysis of wall thickness variation in the hydro-bending of a double-layered tube. Int J Adv Manuf Tech 81(1–4):67–72CrossRef
49.
go back to reference E D X, Zhou D J. (2016) Metal tube bending: theory and forming defects analysis. Beijing Institute of Technology Press, Beijing E D X, Zhou D J. (2016) Metal tube bending: theory and forming defects analysis. Beijing Institute of Technology Press, Beijing
50.
go back to reference Tang NC (2000) Plastic-deformation analysis in tube bending. Int J Pre Ves Pip 77(12):751–759CrossRef Tang NC (2000) Plastic-deformation analysis in tube bending. Int J Pre Ves Pip 77(12):751–759CrossRef
Metadata
Title
Effect of bending radius on deformation behavior of H62 brass tubes in a less constrained free bending process
Authors
Jiawei Jiang
Xunzhong Guo
Yizhou Shen
Yangjiangshan Xu
Zhen Wang
Huaguan Li
Jie Tao
Publication date
01-09-2023
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 5/2023
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-023-01774-z

Other articles of this Issue 5/2023

International Journal of Material Forming 5/2023 Go to the issue

Forming processes as a lever a for boosting the ecological transition

Matching the mechanical system of metal forming equipment to reduce life cycle carbon emissions

Premium Partners