Skip to main content
Top

2013 | OriginalPaper | Chapter

Effect of Combustion Characteristics on Wall Radiative Heat Flux in a 100 MWe Oxy-Coal Combustion Plant

Authors : S. Park, C. Ryu, T. Y. Chae, W. Yang, Y. Kim, S. Lee, S. Seo

Published in: Cleaner Combustion and Sustainable World

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Oxy-coal combustion exhibits different reaction, flow and heat transfer characteristics from air-coal combustion due to different properties of oxidizer and flue gas composition. This study investigated the wall radiative heat flux (WRHF) of air- and oxy-coal combustion in a simple hexahedral furnace and in a 100 MWe single-wall-fired boiler using computational modeling. The hexahedral furnace had similar operation conditions with the boiler, but the coal combustion was ignored by prescribing the gas properties after complete combustion at the inlet. The concentrations of O2 in the oxidizers ranging between 26 and 30% and different flue gas recirculation (FGR) methods were considered in the furnace.
In the hexahedral furnace, the oxy-coal case with 28% of O2 and wet FGR had a similar value of Taf with the air-coal combustion case, but its WRHF was 12% higher. The mixed FGR case with about 27% O2 in the oxidizer exhibited the WRHF similar to the air-coal case. During the actual combustion in the 100 MWe boiler using mixed FGR, the reduced volumetric flow rates in the oxy-coal cases lowered the swirl strength of the burners. This stretched the flames and moved the high temperature region farther to the downstream. Due to this reason, the case with 30% O2 in the oxidizers achieved a WRHF close to that of air-coal combustion, although its adiabatic flame temperature (Taf) and WHRF predicted in the simplified hexahedral furnace was 103 K and 10% higher, respectively. Therefore, the combustion characteristics and temperature distribution significantly influences the WRHF, which should be assessed to determine the ideal operating conditions of oxy- coal combustion. The choice of the weighted sum of gray gases model (WSGGM) was not critical in the large coal-fired boiler.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF. Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci. 2005;31(4):283–307.CrossRef Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF. Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci. 2005;31(4):283–307.CrossRef
2.
go back to reference Wall T, Liu Y, Spero C, Elliott L, Khare S, Rathnam R, et al. An overview on oxyfuel coal combustion – state of the art research and technology development. Chem Eng Res Des. 2009;87(4):1003–16.CrossRef Wall T, Liu Y, Spero C, Elliott L, Khare S, Rathnam R, et al. An overview on oxyfuel coal combustion – state of the art research and technology development. Chem Eng Res Des. 2009;87(4):1003–16.CrossRef
3.
go back to reference Khare SP, Wall TF, Farida AZ, Liu Y, Moghtaderi B, Gupta RP. Factors influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel. Fuel. 2008;87(7):1042–9.CrossRef Khare SP, Wall TF, Farida AZ, Liu Y, Moghtaderi B, Gupta RP. Factors influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel. Fuel. 2008;87(7):1042–9.CrossRef
4.
go back to reference Hjärtstam S, Andersson K, Johnsson F, Leckner B. Combustion characteristics of lignite-fired oxy-fuel flames. Fuel. 2009;88(11):2216–24.CrossRef Hjärtstam S, Andersson K, Johnsson F, Leckner B. Combustion characteristics of lignite-fired oxy-fuel flames. Fuel. 2009;88(11):2216–24.CrossRef
5.
go back to reference Rathnam RK, Elliott LK, Wall TF, Liu Y, Moghtaderi B. Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel Process Technol. 2009;90(6):797–802.CrossRef Rathnam RK, Elliott LK, Wall TF, Liu Y, Moghtaderi B. Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel Process Technol. 2009;90(6):797–802.CrossRef
6.
go back to reference Cao H, Sun S, Liu Y, Wall TF. Computational fluid dynamics modeling of NOx reduction mechanism in oxy- fuel combustion. Energy Fuel. 2010;24(1):131–5.CrossRef Cao H, Sun S, Liu Y, Wall TF. Computational fluid dynamics modeling of NOx reduction mechanism in oxy- fuel combustion. Energy Fuel. 2010;24(1):131–5.CrossRef
7.
go back to reference Skeen SA, Benjamin MK, Axelbaum RL. Nitric oxide emissions during coal and coal/biomass combustion under air-fired and oxy-fuel conditions. Energy Fuel. 2010;24(8):4144–52.CrossRef Skeen SA, Benjamin MK, Axelbaum RL. Nitric oxide emissions during coal and coal/biomass combustion under air-fired and oxy-fuel conditions. Energy Fuel. 2010;24(8):4144–52.CrossRef
8.
go back to reference Johansson R, Andersson K, Leckner B, Thunman H. Models for gaseous radiative heat transfer applied to oxy- fuel conditions in boilers. Int J Heat Mass Transf. 2010;53(1–3):220–30.CrossRef Johansson R, Andersson K, Leckner B, Thunman H. Models for gaseous radiative heat transfer applied to oxy- fuel conditions in boilers. Int J Heat Mass Transf. 2010;53(1–3):220–30.CrossRef
9.
go back to reference Yin C, Johansen LCR, Rosendahl LA, Kær SK. New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) modeling of oxy-fuel combustion: derivation, validation, and implementation. Energy Fuel. 2010;24(12):6274–82.CrossRef Yin C, Johansen LCR, Rosendahl LA, Kær SK. New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) modeling of oxy-fuel combustion: derivation, validation, and implementation. Energy Fuel. 2010;24(12):6274–82.CrossRef
10.
go back to reference Park S, Ryu C, Yang W, Kim Y, Lee S, Seo S. Effects of gas and particle emissions on wall radiative heat flux in oxy-fuel combustion. J Mech Sci Technol. 2011;26(5):1633–41.CrossRef Park S, Ryu C, Yang W, Kim Y, Lee S, Seo S. Effects of gas and particle emissions on wall radiative heat flux in oxy-fuel combustion. J Mech Sci Technol. 2011;26(5):1633–41.CrossRef
11.
go back to reference Krishnamoorthy G, Sami M, Orsino S, Perera A, Shahnam M, Huckaby ED. Radiation modeling in oxy-fuel combustion scenarios. Int J Comput Fluid Dynamics. 2010;24(3–4):69–82.CrossRef Krishnamoorthy G, Sami M, Orsino S, Perera A, Shahnam M, Huckaby ED. Radiation modeling in oxy-fuel combustion scenarios. Int J Comput Fluid Dynamics. 2010;24(3–4):69–82.CrossRef
12.
go back to reference Edge P, Gharebaghi M, Irons R, Porter R, Porter RTJ, Pourkashanian M, Smith D, Stephenson P, Williams A. Combustion modelling opportunities and challenges for oxy-coal carbon capture technology. Chem Eng Res Des. 2011;89(9):1470–93.CrossRef Edge P, Gharebaghi M, Irons R, Porter R, Porter RTJ, Pourkashanian M, Smith D, Stephenson P, Williams A. Combustion modelling opportunities and challenges for oxy-coal carbon capture technology. Chem Eng Res Des. 2011;89(9):1470–93.CrossRef
13.
go back to reference Hottel HC, Sarofim AF. Radiative transfer. New York: McGraw-Hill; 1967. Hottel HC, Sarofim AF. Radiative transfer. New York: McGraw-Hill; 1967.
14.
go back to reference Smith TF, Shen ZF, Friedman JN. Evaluation of coefficients for the weighted sum of gray gases model. J Heat Transf. 1982;104(4):602–8.CrossRef Smith TF, Shen ZF, Friedman JN. Evaluation of coefficients for the weighted sum of gray gases model. J Heat Transf. 1982;104(4):602–8.CrossRef
16.
go back to reference Fluent Inc. Fluent 6.3 user’s guide, Lebanon, New Hampshire, USA, 2006. Fluent Inc. Fluent 6.3 user’s guide, Lebanon, New Hampshire, USA, 2006.
17.
go back to reference Siegel R, Howell JR. Thermal radiation heat transfer. 3rd ed. Washington: Hemisphere Publishing Corporation; 1992. Siegel R, Howell JR. Thermal radiation heat transfer. 3rd ed. Washington: Hemisphere Publishing Corporation; 1992.
18.
go back to reference Magnussen BF, Hjertager BH. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. In: 16th international symposium on combustion. The Combustion Institute, 1976. pp. 719–29. Magnussen BF, Hjertager BH. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. In: 16th international symposium on combustion. The Combustion Institute, 1976. pp. 719–29.
19.
go back to reference Wen CY, Chaung TZ. Entrainment coal gasification modeling. Ind Eng Chem Process Des Dev. 1979;18(4):684–95.CrossRef Wen CY, Chaung TZ. Entrainment coal gasification modeling. Ind Eng Chem Process Des Dev. 1979;18(4):684–95.CrossRef
20.
go back to reference Jones WP, Lindstedt RP. Global reaction schemes for hydrocarbon combustion. Combust Flame. 1988;73(3):233–49.CrossRef Jones WP, Lindstedt RP. Global reaction schemes for hydrocarbon combustion. Combust Flame. 1988;73(3):233–49.CrossRef
21.
go back to reference Westbrook CK, Dryer FL. Chemical kinetic modeling of hydrocarbon combustion. Prog Energy Combust Sci. 1984;10(1):1–57.CrossRef Westbrook CK, Dryer FL. Chemical kinetic modeling of hydrocarbon combustion. Prog Energy Combust Sci. 1984;10(1):1–57.CrossRef
Metadata
Title
Effect of Combustion Characteristics on Wall Radiative Heat Flux in a 100 MWe Oxy-Coal Combustion Plant
Authors
S. Park
C. Ryu
T. Y. Chae
W. Yang
Y. Kim
S. Lee
S. Seo
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-30445-3_169