Skip to main content
Top

2021 | OriginalPaper | Chapter

Effect of Curing Temperature on the Alkali Activation of German Brown Coal Fly Ash

Authors : David W. Law, Patrick Sturm, Gregor J. G. Gluth, Chamila Gunasekara

Published in: Proceedings of the 3rd RILEM Spring Convention and Conference (RSCC 2020)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to environmental concerns regarding the use of Portland cement as the principal binder material in concrete and mortar it is imperative to identify alternative materials that could reduce the carbon footprint of the construction industry. One alternative to address these issues is the use of alkali activated materials, in particular, when based on waste streams that currently have no or only limited industrial application. This paper reports a preliminary study into the synthesis of geopolymer mortar utilizing Brown Coal Fly Ash. The ash had a CaO content of ~39%, indicating that synthesis at ambient or low temperature may be feasible. The paper reports initial trials on the effect of curing temperature, ambient to 120 °C, on the mechanical properties of the mortars produced. The results showed that ambient cured mortar achieved a compressive strength of 6.5 MPa at 3 days. A curing temperature of 60 °C gave the optimum results with a compressive strength of almost 20 MPa and a flexural strength of 3.5 MPa obtained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference He, Z., et al.: Comparison of CO2 emissions from OPC and recycled cement production. Constr. Build. Mater. 211, 965–973 (2019)CrossRef He, Z., et al.: Comparison of CO2 emissions from OPC and recycled cement production. Constr. Build. Mater. 211, 965–973 (2019)CrossRef
2.
go back to reference Rodgers, L.: BBC News-Climate Change: The Massive CO2 Emitter You May Not Know About (2018) Rodgers, L.: BBC News-Climate Change: The Massive CO2 Emitter You May Not Know About (2018)
3.
go back to reference Stajanča, M., Eštoková, A.: Environmental Impacts of Cement Production (2012) Stajanča, M., Eštoková, A.: Environmental Impacts of Cement Production (2012)
4.
go back to reference Inti, S., Sharma, M., Tandon, V.: Ground granulated blast furnace slag (GGBS) and rice husk ash (RHA) uses in the production of geopolymer concrete. In: Geo-Chicago 2016, pp. 621–632 (2016) Inti, S., Sharma, M., Tandon, V.: Ground granulated blast furnace slag (GGBS) and rice husk ash (RHA) uses in the production of geopolymer concrete. In: Geo-Chicago 2016, pp. 621–632 (2016)
5.
go back to reference AS3972, (ed.): Portland and Blended Cements, 2nd edn. Australian Standard (2010) AS3972, (ed.): Portland and Blended Cements, 2nd edn. Australian Standard (2010)
6.
go back to reference 197-1:2011, B.E.: Cement: Composition, Specifications and Conformity Criteria for Common Cements, BSI (2011) 197-1:2011, B.E.: Cement: Composition, Specifications and Conformity Criteria for Common Cements, BSI (2011)
7.
go back to reference Shaikh, F.U.A., Supit, S.W.M.: Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Constr. Build. Mater. 70, 309–321 (2014)CrossRef Shaikh, F.U.A., Supit, S.W.M.: Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Constr. Build. Mater. 70, 309–321 (2014)CrossRef
8.
go back to reference Roychand, R., et al.: Micro and nano engineered high volume ultrafine fly ash cement composite with and without additives. Int. J. Concr. Struct. Mater. 10(1), 113–124 (2016)CrossRef Roychand, R., et al.: Micro and nano engineered high volume ultrafine fly ash cement composite with and without additives. Int. J. Concr. Struct. Mater. 10(1), 113–124 (2016)CrossRef
9.
go back to reference Rickard, W.D.A., Gluth, G.J.G., Pistol, K.: In-situ thermo-mechanical testing of fly ash geopolymer concretes made with quartz and expanded clay aggregates. Cem. Concr. Res. 80, 33–43 (2016)CrossRef Rickard, W.D.A., Gluth, G.J.G., Pistol, K.: In-situ thermo-mechanical testing of fly ash geopolymer concretes made with quartz and expanded clay aggregates. Cem. Concr. Res. 80, 33–43 (2016)CrossRef
10.
go back to reference Provis, J.L., Palomo, A., Shi, C.J.: Advances in understanding alkali-activated materials. Cem. Concr. Res. 78, 110–125 (2015)CrossRef Provis, J.L., Palomo, A., Shi, C.J.: Advances in understanding alkali-activated materials. Cem. Concr. Res. 78, 110–125 (2015)CrossRef
11.
go back to reference Gunasekara, C., et al.: Zeta potential, gel formation and compressive strength of low calciumfly ash geopolymers. Constr. Build. Mater. 95, 592–599 (2015)CrossRef Gunasekara, C., et al.: Zeta potential, gel formation and compressive strength of low calciumfly ash geopolymers. Constr. Build. Mater. 95, 592–599 (2015)CrossRef
12.
go back to reference Fernandez-Jimenez, A., Palomo, A., Criado, M.: Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem. Concr. Res. 35(6), 1204–1209 (2005)CrossRef Fernandez-Jimenez, A., Palomo, A., Criado, M.: Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem. Concr. Res. 35(6), 1204–1209 (2005)CrossRef
13.
go back to reference C618-17a, A., Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, West Conshohocken, PA (2017) C618-17a, A., Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, West Conshohocken, PA (2017)
14.
go back to reference Dirgantara, R., Law, D.W., Molyneaux, T.C.K.: Compressive strength variability of brown coal fly ash geopolymer concrete. Int. J. Res. Eng. Technol. 3(13), 165–169 (2014) Dirgantara, R., Law, D.W., Molyneaux, T.C.K.: Compressive strength variability of brown coal fly ash geopolymer concrete. Int. J. Res. Eng. Technol. 3(13), 165–169 (2014)
15.
go back to reference Macphee, D.E., Black, C.J., Taylor, A.H.: Cements incorporating brown coal fly-ash from the Latrobe valley region of Victoria Australia. Cem. Concr. Res. 23(3), 507–517 (1993)CrossRef Macphee, D.E., Black, C.J., Taylor, A.H.: Cements incorporating brown coal fly-ash from the Latrobe valley region of Victoria Australia. Cem. Concr. Res. 23(3), 507–517 (1993)CrossRef
16.
go back to reference Britt, A., et al.: Australia’s Identified Mineral Resources 2014, p. 4. Geoscience Australia, Canberra (2015) Britt, A., et al.: Australia’s Identified Mineral Resources 2014, p. 4. Geoscience Australia, Canberra (2015)
17.
go back to reference Macphee, D.E., Black, C.J., Taylor, A.H.: Cements incorporating brown coal fly ash from the Latrobe Valley region of Victoria, Australia. Cem. Concr. Res. 23(3), 507–517 (1993) Macphee, D.E., Black, C.J., Taylor, A.H.: Cements incorporating brown coal fly ash from the Latrobe Valley region of Victoria, Australia. Cem. Concr. Res. 23(3), 507–517 (1993)
18.
go back to reference CIA: Recommended Practice Geopolymer Concrete. Concrete Institute of Australia, Sydney (2011) CIA: Recommended Practice Geopolymer Concrete. Concrete Institute of Australia, Sydney (2011)
19.
go back to reference Dirgantara, R., et al.: Suitability of brown coal fly ash for geopolymer production. J. Mater. Civ. Eng. 29(12), 04017247 (2017)CrossRef Dirgantara, R., et al.: Suitability of brown coal fly ash for geopolymer production. J. Mater. Civ. Eng. 29(12), 04017247 (2017)CrossRef
20.
go back to reference Tennakoon, C., et al.: Characteristics of Australian brown coal fly ash blended geopolymers. Constr. Build. Mater. 101, 396–409 (2015)CrossRef Tennakoon, C., et al.: Characteristics of Australian brown coal fly ash blended geopolymers. Constr. Build. Mater. 101, 396–409 (2015)CrossRef
21.
go back to reference Whitfield, P.S., Mitchell, L.D.: Quantitative Rietveld analysis of the amorphous content in cements and clinkers. J. Mater. Sci. 38(21), 4415–4421 (2003)CrossRef Whitfield, P.S., Mitchell, L.D.: Quantitative Rietveld analysis of the amorphous content in cements and clinkers. J. Mater. Sci. 38(21), 4415–4421 (2003)CrossRef
22.
go back to reference Dirgantara, R., et al.: Suitability of brown coal fly ash for geopolymer production. J. Mater. Civil Eng. 29(12) (2017) Dirgantara, R., et al.: Suitability of brown coal fly ash for geopolymer production. J. Mater. Civil Eng. 29(12) (2017)
23.
go back to reference van Jaarsveld, J.G.S., van Deventer, J.S.J., Lukey, G.C.: The characterisation of source materials in fly ash-based geopolymers. Mater. Lett. 57(7), 1272–1280 (2003)CrossRef van Jaarsveld, J.G.S., van Deventer, J.S.J., Lukey, G.C.: The characterisation of source materials in fly ash-based geopolymers. Mater. Lett. 57(7), 1272–1280 (2003)CrossRef
24.
go back to reference Hardjito, D., Rangan, B.V.: Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete. Curtin University (2005) Hardjito, D., Rangan, B.V.: Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete. Curtin University (2005)
25.
go back to reference Fernandez-Jimenez, A., et al.: Quantitative determination of phases in the alkali activation of fly ash Part I. Potential ash reactivity. Fuel 85(5–6), 625–634 (2006)CrossRef Fernandez-Jimenez, A., et al.: Quantitative determination of phases in the alkali activation of fly ash Part I. Potential ash reactivity. Fuel 85(5–6), 625–634 (2006)CrossRef
26.
go back to reference Provis, J.L., Bernal, S.A.: Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 44(44), 299–327 (2014)CrossRef Provis, J.L., Bernal, S.A.: Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 44(44), 299–327 (2014)CrossRef
27.
go back to reference Alvarez-Ayuso, E., et al.: Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. J. Hazard. Mater. 154(1–3), 175–183 (2008)CrossRef Alvarez-Ayuso, E., et al.: Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. J. Hazard. Mater. 154(1–3), 175–183 (2008)CrossRef
28.
go back to reference Diaz, E.I., Allouche, E.N., Eklund, S.: Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 89(5), 992–996 (2010)CrossRef Diaz, E.I., Allouche, E.N., Eklund, S.: Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 89(5), 992–996 (2010)CrossRef
29.
go back to reference Kukier, U., et al.: Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environ. Pollut. 123(2), 255–266 (2003)CrossRef Kukier, U., et al.: Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environ. Pollut. 123(2), 255–266 (2003)CrossRef
Metadata
Title
Effect of Curing Temperature on the Alkali Activation of German Brown Coal Fly Ash
Authors
David W. Law
Patrick Sturm
Gregor J. G. Gluth
Chamila Gunasekara
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-76551-4_7