Skip to main content
Top
Published in: Journal of Materials Science 21/2017

17-07-2017 | Electronic materials

Effect of ferrocene catalyst particle size on structural and morphological characteristics of carbon nanotubes grown by microwave oven

Authors: Natheer A. Algadri, Z. Hassan, K. Ibrahim, M. Bououdina

Published in: Journal of Materials Science | Issue 21/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The influence of catalyst particle size on the formation and diameter of carbon nanotubes (CNTs) is investigated. Ferrocene catalyst with an average diameter of 19.7, 21.4, 23.6 and 27.0 µm is used for the growth of CNTs by a cost-effective and facile method using microwave oven. Morphological observations by transmission electron microscopy and field emission scanning electron microscopy reveal consistently that smaller catalyst diameter generates CNTs with smaller diameter. Raman spectroscopy indicates that the full width at half maximum of G-, D- and 2D-bands decreases gradually with increasing CNTs diameter; meanwhile, G-band/D-band intensity ratio is found to be sensitive to crystal defects, showing a drop for CNTs diameter in the range 25–40 nm then followed by a slight increase for higher diameters. This may be associated with CNTs curvature and strain which developed along tube walls. X-ray diffraction analysis demonstrates an increase in d (002) interlayer spacing with decreasing CNTs diameter. Furthermore, CNTs diameter is found to be inversely proportional to (002) linewidth. Finally, the energy band gap estimated from UV–NIR–Vis measurements increases slightly with CNTs diameter, 5.69–5.84 eV.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Köhler AR, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8):927–937CrossRef Köhler AR, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8):927–937CrossRef
2.
go back to reference Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872–15884CrossRef Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872–15884CrossRef
3.
go back to reference Zhang X, Liu Z (2012) Recent advances in microwave initiated synthesis of nanocarbon materials. Nanoscale 4(3):707–714CrossRef Zhang X, Liu Z (2012) Recent advances in microwave initiated synthesis of nanocarbon materials. Nanoscale 4(3):707–714CrossRef
4.
go back to reference Xie H, Poyraz S, Thu M, Liu Y, Snyder EY, Smith JW, Zhang X (2014) Microwave-assisted fabrication of carbon nanotubes decorated polymeric nano-medical platforms for simultaneous drug delivery and magnetic resonance imaging. RSC Adv 4(11):5649–5652CrossRef Xie H, Poyraz S, Thu M, Liu Y, Snyder EY, Smith JW, Zhang X (2014) Microwave-assisted fabrication of carbon nanotubes decorated polymeric nano-medical platforms for simultaneous drug delivery and magnetic resonance imaging. RSC Adv 4(11):5649–5652CrossRef
5.
go back to reference Jones D, Lelyveld T, Mavrofidis S, Kingman S, Miles N (2002) Microwave heating applications in environmental engineering—a review. Resour Conserv Recycl 34(2):75–90CrossRef Jones D, Lelyveld T, Mavrofidis S, Kingman S, Miles N (2002) Microwave heating applications in environmental engineering—a review. Resour Conserv Recycl 34(2):75–90CrossRef
6.
go back to reference Liu Z, Wang J, Kushvaha V, Poyraz S, Tippur H, Park S, Kim M, Liu Y, Bar J, Chen H (2011) Poptube approach for ultrafast carbon nanotube growth. Chem Commun 47(35):9912–9914CrossRef Liu Z, Wang J, Kushvaha V, Poyraz S, Tippur H, Park S, Kim M, Liu Y, Bar J, Chen H (2011) Poptube approach for ultrafast carbon nanotube growth. Chem Commun 47(35):9912–9914CrossRef
7.
go back to reference Poyraz S, Liu Z, Liu Y, Zhang X (2013) Devulcanization of scrap ground tire rubber and successive carbon nanotube growth by microwave irradiation. Curr Org Chem 17(20):2243–2248CrossRef Poyraz S, Liu Z, Liu Y, Zhang X (2013) Devulcanization of scrap ground tire rubber and successive carbon nanotube growth by microwave irradiation. Curr Org Chem 17(20):2243–2248CrossRef
8.
go back to reference Poyraz S, Zhang L, Schroder A, Zhang X (2015) Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials. ACS Appl Mater Interfaces 7(40):22469–22477CrossRef Poyraz S, Zhang L, Schroder A, Zhang X (2015) Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials. ACS Appl Mater Interfaces 7(40):22469–22477CrossRef
9.
go back to reference Liu Z, Zhang L, Poyraz S, Smith J, Kushvaha V, Tippur H, Zhang X (2014) An ultrafast microwave approach towards multi-component and multi-dimensional nanomaterials. RSC Adv 4(18):9308–9313CrossRef Liu Z, Zhang L, Poyraz S, Smith J, Kushvaha V, Tippur H, Zhang X (2014) An ultrafast microwave approach towards multi-component and multi-dimensional nanomaterials. RSC Adv 4(18):9308–9313CrossRef
10.
go back to reference Odom TW, Huang J-L, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64CrossRef Odom TW, Huang J-L, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64CrossRef
11.
go back to reference Cabria I, Mintmire J, White C (2003) Metallic and semiconducting narrow carbon nanotubes. Phys Rev B 67(12):121406CrossRef Cabria I, Mintmire J, White C (2003) Metallic and semiconducting narrow carbon nanotubes. Phys Rev B 67(12):121406CrossRef
12.
go back to reference Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106(10):2429–2433CrossRef Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106(10):2429–2433CrossRef
13.
go back to reference Nasibulin AG, Pikhitsa PV, Jiang H, Kauppinen EI (2005) Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon 43(11):2251–2257CrossRef Nasibulin AG, Pikhitsa PV, Jiang H, Kauppinen EI (2005) Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon 43(11):2251–2257CrossRef
14.
go back to reference Ago H, Komatsu T, Ohshima S, Kuriki Y, Yumura M (2000) Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl Phys Lett 77(1):79–81CrossRef Ago H, Komatsu T, Ohshima S, Kuriki Y, Yumura M (2000) Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl Phys Lett 77(1):79–81CrossRef
15.
go back to reference Schäffel F, Kramberger C, Rümmeli MH, Grimm D, Mohn E, Gemming T, Pichler T, Rellinghaus B, Büchner B, Schultz L (2007) Nanoengineered catalyst particles as a key for tailor-made carbon nanotubes. Chem Mater 19(20):5006–5009CrossRef Schäffel F, Kramberger C, Rümmeli MH, Grimm D, Mohn E, Gemming T, Pichler T, Rellinghaus B, Büchner B, Schultz L (2007) Nanoengineered catalyst particles as a key for tailor-made carbon nanotubes. Chem Mater 19(20):5006–5009CrossRef
16.
go back to reference Antunes E, Lobo A, Corat E, Trava-Airoldi V (2007) Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes. Carbon 45(5):913–921CrossRef Antunes E, Lobo A, Corat E, Trava-Airoldi V (2007) Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes. Carbon 45(5):913–921CrossRef
17.
go back to reference Singh DK, Iyer P, Giri P (2010) Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies. Diam Relat Mater 19(10):1281–1288CrossRef Singh DK, Iyer P, Giri P (2010) Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies. Diam Relat Mater 19(10):1281–1288CrossRef
18.
go back to reference Mondal A, Agrawal D, Upadhyaya A (2008) Microwave heating of pure copper powder with different particle size and porosity. In: Global congress on microwave energy application, Japan Mondal A, Agrawal D, Upadhyaya A (2008) Microwave heating of pure copper powder with different particle size and porosity. In: Global congress on microwave energy application, Japan
19.
go back to reference Bai X, Li D, Wang Y, Liang J (2005) Effects of temperature and catalyst concentration on the growth of aligned carbon nanotubes. Tsinghua Sci Technol 10(6):729–735CrossRef Bai X, Li D, Wang Y, Liang J (2005) Effects of temperature and catalyst concentration on the growth of aligned carbon nanotubes. Tsinghua Sci Technol 10(6):729–735CrossRef
20.
go back to reference Shamsudin M, Asli N, Abdullah S, Yahya S, Rusop M (2012) Effect of synthesis temperature on the growth iron-filled carbon nanotubes as evidenced by structural, micro-raman, and thermogravimetric analyses. Adv Condens Matter Phys 2012:1–7CrossRef Shamsudin M, Asli N, Abdullah S, Yahya S, Rusop M (2012) Effect of synthesis temperature on the growth iron-filled carbon nanotubes as evidenced by structural, micro-raman, and thermogravimetric analyses. Adv Condens Matter Phys 2012:1–7CrossRef
21.
go back to reference Tuinstra F, Koenig J (1970) Characterization of graphite fiber surfaces with Raman spectroscopy. J Compos Mater 4(4):492–499CrossRef Tuinstra F, Koenig J (1970) Characterization of graphite fiber surfaces with Raman spectroscopy. J Compos Mater 4(4):492–499CrossRef
22.
go back to reference Ebbesen T, Takada T (1995) Topological and sp 3 defect structures in nanotubes. Carbon 33(7):973–978CrossRef Ebbesen T, Takada T (1995) Topological and sp 3 defect structures in nanotubes. Carbon 33(7):973–978CrossRef
23.
go back to reference Reznik D, Olk C, Neumann D, Copley J (1995) X-ray powder diffraction from carbon nanotubes and nanoparticles. Phys Rev B 52(1):116CrossRef Reznik D, Olk C, Neumann D, Copley J (1995) X-ray powder diffraction from carbon nanotubes and nanoparticles. Phys Rev B 52(1):116CrossRef
24.
go back to reference Davis JA, Leckie JO (1978) Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J Colloid Interface Sci 67(1):90–107CrossRef Davis JA, Leckie JO (1978) Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J Colloid Interface Sci 67(1):90–107CrossRef
25.
go back to reference Liu M, Cowley JM (1994) Structures of carbon nanotubes studied by HRTEM and nanodiffraction. Ultramicroscopy 53(4):333–342CrossRef Liu M, Cowley JM (1994) Structures of carbon nanotubes studied by HRTEM and nanodiffraction. Ultramicroscopy 53(4):333–342CrossRef
26.
go back to reference Kiang C-H, Endo M, Ajayan P, Dresselhaus G, Dresselhaus M (1998) Size effects in carbon nanotubes. Phys Rev Lett 81(9):1869CrossRef Kiang C-H, Endo M, Ajayan P, Dresselhaus G, Dresselhaus M (1998) Size effects in carbon nanotubes. Phys Rev Lett 81(9):1869CrossRef
27.
go back to reference Maciel IO, Anderson N, Pimenta MA, Hartschuh A, Qian H, Terrones M, Terrones H, Campos-Delgado J, Rao AM, Novotny L (2008) Electron and phonon renormalization near charged defects in carbon nanotubes. Nat Mater 7(11):878–883CrossRef Maciel IO, Anderson N, Pimenta MA, Hartschuh A, Qian H, Terrones M, Terrones H, Campos-Delgado J, Rao AM, Novotny L (2008) Electron and phonon renormalization near charged defects in carbon nanotubes. Nat Mater 7(11):878–883CrossRef
28.
go back to reference Butler M (1977) Photoelectrolysis and physical properties of the semiconducting electrode WO2. J Appl Phys 48(5):1914–1920CrossRef Butler M (1977) Photoelectrolysis and physical properties of the semiconducting electrode WO2. J Appl Phys 48(5):1914–1920CrossRef
29.
go back to reference Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517):706–709CrossRef Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517):706–709CrossRef
30.
31.
go back to reference Guo G, Chu K, Wang D-S, Duan C-G (2004) Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations. Phys Rev B 69(20):205416CrossRef Guo G, Chu K, Wang D-S, Duan C-G (2004) Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations. Phys Rev B 69(20):205416CrossRef
Metadata
Title
Effect of ferrocene catalyst particle size on structural and morphological characteristics of carbon nanotubes grown by microwave oven
Authors
Natheer A. Algadri
Z. Hassan
K. Ibrahim
M. Bououdina
Publication date
17-07-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1381-2

Other articles of this Issue 21/2017

Journal of Materials Science 21/2017 Go to the issue

Premium Partners