Skip to main content
Top
Published in: Journal of Computational Neuroscience 2/2014

01-10-2014

Effect of non-symmetric waveform on conduction block induced by high-frequency (kHz) biphasic stimulation in unmyelinated axon

Authors: Shouguo Zhao, Guangning Yang, Jicheng Wang, James R. Roppolo, William C. de Groat, Changfeng Tai

Published in: Journal of Computational Neuroscience | Issue 2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of a non-symmetric waveform on nerve conduction block induced by high-frequency biphasic stimulation is investigated using a lumped circuit model of the unmyelinated axon based on Hodgkin-Huxley equations. The simulation results reveal that the block threshold monotonically increases with the stimulation frequency for the symmetric stimulation waveform. However, a non-monotonic relationship between block threshold and stimulation frequency is observed when the stimulation waveform is non-symmetric. Constant activation of potassium channels by the high-frequency stimulation results in the increase of block threshold with increasing frequency. The non-symmetric waveform with a positive pulse 0.4–0.8 μs longer than the negative pulse blocks axonal conduction by hyperpolarizing the membrane and causes a decrease in block threshold as the frequency increases above 12–16 kHz. On the other hand, the non-symmetric waveform with a negative pulse 0.4–0.8 μs longer than the positive pulse blocks axonal conduction by depolarizing the membrane and causes a decrease in block threshold as the frequency increases above 40–53 kHz. This simulation study is important for understanding the potential mechanisms underlying the nerve block observed in animal studies, and may also help to design new animal experiments to further improve the nerve block method for clinical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bowman, B. R., & McNeal, D. R. (1986). Response of single alpha motoneurons to high-frequency pulse train: firing behavior and conduction block phenomenon. Applied Neurophysiology, 49, 121–138.PubMed Bowman, B. R., & McNeal, D. R. (1986). Response of single alpha motoneurons to high-frequency pulse train: firing behavior and conduction block phenomenon. Applied Neurophysiology, 49, 121–138.PubMed
go back to reference Boyce WE, Diprima RC. Elementary differential equations and boundary value problems. John Wiley & Sons Inc. 6th ed: 436–457, 1997. Boyce WE, Diprima RC. Elementary differential equations and boundary value problems. John Wiley & Sons Inc. 6th ed: 436–457, 1997.
go back to reference Camilleri, M., Toouli, J., Herrera, M. F., Kow, L., Pantoja, J. P., Billington, C. J., Tweden, K. S., Wilson, R. R., & Moody, F. G. (2009). Selection of electrical algorithms to treat obesity with intermittent vagal block using an implantable medical device. Surgery for Obesity and Related Diseases, 5, 224–230.PubMedCrossRef Camilleri, M., Toouli, J., Herrera, M. F., Kow, L., Pantoja, J. P., Billington, C. J., Tweden, K. S., Wilson, R. R., & Moody, F. G. (2009). Selection of electrical algorithms to treat obesity with intermittent vagal block using an implantable medical device. Surgery for Obesity and Related Diseases, 5, 224–230.PubMedCrossRef
go back to reference Cattell, M., & Gerard, R. W. (1935). The “inhibitory” effect of high-frequency stimulation and the excitation state of nerve. Journal of Physiology, 83, 407–415.PubMedCentralPubMed Cattell, M., & Gerard, R. W. (1935). The “inhibitory” effect of high-frequency stimulation and the excitation state of nerve. Journal of Physiology, 83, 407–415.PubMedCentralPubMed
go back to reference Cuellar, J. M., Alataris, K., Walker, A., Yeomans, D. C., & Antognini, J. F. (2013). Effect of high-frequency alternating current on spinal afferent nociceptive transmission. Neuromodulation, 16, 318–327.PubMedCrossRef Cuellar, J. M., Alataris, K., Walker, A., Yeomans, D. C., & Antognini, J. F. (2013). Effect of high-frequency alternating current on spinal afferent nociceptive transmission. Neuromodulation, 16, 318–327.PubMedCrossRef
go back to reference Frankenhaeuser, B. (1960). Quantitative description of sodium currents in myelinated nerve fibres of xenopus laevis. Journal of Physiology (London), 151, 491–501. Frankenhaeuser, B. (1960). Quantitative description of sodium currents in myelinated nerve fibres of xenopus laevis. Journal of Physiology (London), 151, 491–501.
go back to reference Gaunt, R. A., & Prochazka, A. (2009). Transcutaneously coupled, high-frequency electrical stimulation of the pudendal nerve blocks external urethral sphincter contractions. Neurorehab. Neural Repair, 23, 615–626.CrossRef Gaunt, R. A., & Prochazka, A. (2009). Transcutaneously coupled, high-frequency electrical stimulation of the pudendal nerve blocks external urethral sphincter contractions. Neurorehab. Neural Repair, 23, 615–626.CrossRef
go back to reference Heinbockel JH. Numerical Methods for Scientific Computing. Trafford Publishing, 2005. Heinbockel JH. Numerical Methods for Scientific Computing. Trafford Publishing, 2005.
go back to reference Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology (London), 117, 500–544. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology (London), 117, 500–544.
go back to reference Jan, L. Y., & Jan, Y. N. (2012). Voltage-gated potassium channels and the diversity of electrical signalling. Journal of Physiology (London), 590, 2591–2599.CrossRef Jan, L. Y., & Jan, Y. N. (2012). Voltage-gated potassium channels and the diversity of electrical signalling. Journal of Physiology (London), 590, 2591–2599.CrossRef
go back to reference Joseph, L., & Butera, R. (2009). Unmyelinated aplysia nerves exhibit a nonmonotonic blocking response to high-frequency stimulation. IEEE Trans Neural Syst Rehab Eng, 17, 537–544.CrossRef Joseph, L., & Butera, R. (2009). Unmyelinated aplysia nerves exhibit a nonmonotonic blocking response to high-frequency stimulation. IEEE Trans Neural Syst Rehab Eng, 17, 537–544.CrossRef
go back to reference Joseph, L., & Butera, R. (2011). High-frequency stimulation selectively blocks different types of fibers in frog sciatic nerve. IEEE Trans Neural Syst Rehab Eng, 19, 550–557.CrossRef Joseph, L., & Butera, R. (2011). High-frequency stimulation selectively blocks different types of fibers in frog sciatic nerve. IEEE Trans Neural Syst Rehab Eng, 19, 550–557.CrossRef
go back to reference Leob, G. E. (1989). Neural prosthetic interfaces with the nervous system. Trends in Neurosciences, 12, 195–201.CrossRef Leob, G. E. (1989). Neural prosthetic interfaces with the nervous system. Trends in Neurosciences, 12, 195–201.CrossRef
go back to reference Rattay, F. (1989). Analysis of models for extracellular fiber stimulation. IEEE Transactions on Biomedical Engineering, 36, 676–682.PubMedCrossRef Rattay, F. (1989). Analysis of models for extracellular fiber stimulation. IEEE Transactions on Biomedical Engineering, 36, 676–682.PubMedCrossRef
go back to reference Rattay, F., & Aberham, M. (1993). Modeling axon membranes for functional electrical stimulation. IEEE Transactions on Biomedical Engineering, 40, 1201–1209.PubMedCrossRef Rattay, F., & Aberham, M. (1993). Modeling axon membranes for functional electrical stimulation. IEEE Transactions on Biomedical Engineering, 40, 1201–1209.PubMedCrossRef
go back to reference Reboul, J., & Rosenblueth, A. (1939). The action of alternating currents upon the electrical excitability of nerve. American Journal of Physiology, 125, 205–215. Reboul, J., & Rosenblueth, A. (1939). The action of alternating currents upon the electrical excitability of nerve. American Journal of Physiology, 125, 205–215.
go back to reference Rosenblueth, A., & Reboul, J. (1939). The blocking and deblocking effects of alternating currents on nerve. American Journal of Physiology, 125, 251–264. Rosenblueth, A., & Reboul, J. (1939). The blocking and deblocking effects of alternating currents on nerve. American Journal of Physiology, 125, 251–264.
go back to reference Roth, B. J. (1994). Mechanisms for electrical stimulation of excitable tissue. Critical Rev Biomed Eng, 22, 253–305. Roth, B. J. (1994). Mechanisms for electrical stimulation of excitable tissue. Critical Rev Biomed Eng, 22, 253–305.
go back to reference Roth, B. J. (1995). A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Transactions on Biomedical Engineering, 42, 1174–1184.PubMedCrossRef Roth, B. J. (1995). A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Transactions on Biomedical Engineering, 42, 1174–1184.PubMedCrossRef
go back to reference Schwarz, J. R., Reid, G., & Bostock, H. (1995). Action potentials and membrane currents in the human node of Ranvier. Pflügers Archiv, 430, 283–292.PubMedCrossRef Schwarz, J. R., Reid, G., & Bostock, H. (1995). Action potentials and membrane currents in the human node of Ranvier. Pflügers Archiv, 430, 283–292.PubMedCrossRef
go back to reference Song, D., Raphael, G., Lan, N., & Loeb, G. E. (2008). Computationally efficient models of neuromuscular recruitment and mechanics. Journal of Neural Engineering, 5, 175–184.PubMedCrossRef Song, D., Raphael, G., Lan, N., & Loeb, G. E. (2008). Computationally efficient models of neuromuscular recruitment and mechanics. Journal of Neural Engineering, 5, 175–184.PubMedCrossRef
go back to reference Tai, C., Roppolo, J. R., & de Groat, W. C. (2004). Block of external urethral sphincter contraction by high frequency electrical stimulation of pudendal nerve. Journal of Urology, 172, 2069–2072.PubMedCrossRef Tai, C., Roppolo, J. R., & de Groat, W. C. (2004). Block of external urethral sphincter contraction by high frequency electrical stimulation of pudendal nerve. Journal of Urology, 172, 2069–2072.PubMedCrossRef
go back to reference Tai, C., de Groat, W. C., & Roppolo, J. R. (2005a). Simulation analysis of conduction block in unmyelinated axons induced by high-frequency biphasic electrical currents. IEEE Transactions on Biomedical Engineering, 52, 1323–1332.PubMedCentralPubMedCrossRef Tai, C., de Groat, W. C., & Roppolo, J. R. (2005a). Simulation analysis of conduction block in unmyelinated axons induced by high-frequency biphasic electrical currents. IEEE Transactions on Biomedical Engineering, 52, 1323–1332.PubMedCentralPubMedCrossRef
go back to reference Tai, C., de Groat, W. C., & Roppolo, J. R. (2005b). Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin-Huxley model. IEEE Trans Neural Syst Rehab Eng, 13, 415–422.CrossRef Tai, C., de Groat, W. C., & Roppolo, J. R. (2005b). Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin-Huxley model. IEEE Trans Neural Syst Rehab Eng, 13, 415–422.CrossRef
go back to reference Tai, C., Roppolo, J. R., & de Groat, W. C. (2009). Analysis of nerve conduction block induced by direct current. Journal of Computational Neuroscience, 27, 201–210.PubMedCentralPubMedCrossRef Tai, C., Roppolo, J. R., & de Groat, W. C. (2009). Analysis of nerve conduction block induced by direct current. Journal of Computational Neuroscience, 27, 201–210.PubMedCentralPubMedCrossRef
go back to reference Tai, C., Guo, D., Wang, J., Roppolo, J. R., & de Groat, W. C. (2011). Mechanism of conduction block in amphibian myelinated axon induced by biphasic electrical current at ultra-high frequency. Journal of Computational Neuroscience, 31, 615–623.PubMedCentralPubMedCrossRef Tai, C., Guo, D., Wang, J., Roppolo, J. R., & de Groat, W. C. (2011). Mechanism of conduction block in amphibian myelinated axon induced by biphasic electrical current at ultra-high frequency. Journal of Computational Neuroscience, 31, 615–623.PubMedCentralPubMedCrossRef
go back to reference Tanner, J. A. (1962). Reversible blocking of nerve conduction by alternating-current excitation. Nature, 195, 712–713.PubMedCrossRef Tanner, J. A. (1962). Reversible blocking of nerve conduction by alternating-current excitation. Nature, 195, 712–713.PubMedCrossRef
go back to reference van Buyten, J. P., Al-Kaisy, A., Smet, I., Palmisani, S., & Smith, T. (2013). High-frequency spinal cord stimulation for the treatment of chronic back pain patients: results of a prospective multicenter European clinical study. Neuromodulation, 16, 59–65.PubMedCrossRef van Buyten, J. P., Al-Kaisy, A., Smet, I., Palmisani, S., & Smith, T. (2013). High-frequency spinal cord stimulation for the treatment of chronic back pain patients: results of a prospective multicenter European clinical study. Neuromodulation, 16, 59–65.PubMedCrossRef
go back to reference Vasylyev, D. V., & Waxman, S. G. (2012). Membrane properties and electrogenesis in the distal axons of small dorsal root ganglion neurons in vitro. Journal of Neurophysiology, 108, 729–740.PubMedCrossRef Vasylyev, D. V., & Waxman, S. G. (2012). Membrane properties and electrogenesis in the distal axons of small dorsal root ganglion neurons in vitro. Journal of Neurophysiology, 108, 729–740.PubMedCrossRef
go back to reference Wattaja, J. J., Tweden, K. S., & Honda, C. N. (2011). Effects of high frequency alternating current on axonal conduction through the vagus nerve. Journal of Neural Engineering, 8, 056031. Wattaja, J. J., Tweden, K. S., & Honda, C. N. (2011). Effects of high frequency alternating current on axonal conduction through the vagus nerve. Journal of Neural Engineering, 8, 056031.
go back to reference Waxman, S. G. (2012). Sodium channels, the electrogenisome and the electrogenistat: lessons and questions from the clinic. Journal of Physiology (London), 590, 2601–2612.CrossRef Waxman, S. G. (2012). Sodium channels, the electrogenisome and the electrogenistat: lessons and questions from the clinic. Journal of Physiology (London), 590, 2601–2612.CrossRef
Metadata
Title
Effect of non-symmetric waveform on conduction block induced by high-frequency (kHz) biphasic stimulation in unmyelinated axon
Authors
Shouguo Zhao
Guangning Yang
Jicheng Wang
James R. Roppolo
William C. de Groat
Changfeng Tai
Publication date
01-10-2014
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 2/2014
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-014-0510-z

Other articles of this Issue 2/2014

Journal of Computational Neuroscience 2/2014 Go to the issue

Premium Partner