Skip to main content
Top
Published in: Fluid Dynamics 3/2021

01-05-2021

Effect of Oil Viscosity on Hydraulic Cavitation Luminescence

Authors: Jian Zhang, Naiming Qi, Jihai Jiang

Published in: Fluid Dynamics | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The collapse of cavitation bubbles in a hydraulic system generates localized zones of high temperature and pressure and, under certain conditions, luminescence. In this study, we studied the influence of the hydraulic oil viscosity on cavitation luminescence. We used a hydraulic cone-type throttle valve with antiwear hydraulic oils with kinematic viscosities of 32, 46, and 46 mm2/s at 40°C. Computational fluid dynamics was used to simulate the flow field of the cone-throttle valve under different viscosities. After constructing the visual experimental platform of hydraulic cavitation, we observed cavitation luminescence of the valve under three different hydraulic oil conditions. After the experiment, the viscosity index of the oil increased, the pour point decreased, and the flash point decreased. Thus, the viscosity–temperature characteristics and low-temperature fluidity improved and the safety decreased after luminescence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Q. D. Chen and L. Wang, “Luminescence from transient cavitation bubbles in water,” Phys. Letters A 339(1–2), 110–117 (2005). Q. D. Chen and L. Wang, “Luminescence from transient cavitation bubbles in water,” Phys. Letters A 339(1–2), 110–117 (2005).
2.
go back to reference B. E. Noltingk and E. A. Neppiras, “Cavitation produced by ultrasonics,” Proc. Physics Society 63B, 674-685 (1950).ADSCrossRef B. E. Noltingk and E. A. Neppiras, “Cavitation produced by ultrasonics,” Proc. Physics Society 63B, 674-685 (1950).ADSCrossRef
3.
go back to reference Chen Weizhong and Xie Zhixing, “Multi-bubble and single-bubble sonoluminescence,” Progr. Physics Z1, 313–323 (1996).ADS Chen Weizhong and Xie Zhixing, “Multi-bubble and single-bubble sonoluminescence,” Progr. Physics Z1, 313–323 (1996).ADS
4.
go back to reference W. C. Moss, D. B. Clarke, J. W. White, et al., “Sonoluminescence and the prospects for table-top micro-thermonuclear fusion,” Phys. Letters A 211, 69–74 1996.ADSCrossRef W. C. Moss, D. B. Clarke, J. W. White, et al., “Sonoluminescence and the prospects for table-top micro-thermonuclear fusion,” Phys. Letters A 211, 69–74 1996.ADSCrossRef
5.
go back to reference Xie Zhixing, Chen Weizhong, and Wei Rongjue, “Acoustic luminescence,” Physics 1, 25–31 (1998). Xie Zhixing, Chen Weizhong, and Wei Rongjue, “Acoustic luminescence,” Physics 1, 25–31 (1998).
6.
go back to reference Kyuichi Yasui, “Effect of non-equilibrium evaporation and condensation on bubble dynamics near the sonoluminescence threshold,” Ultrasonics 36(1), 575–580 (1998).CrossRef Kyuichi Yasui, “Effect of non-equilibrium evaporation and condensation on bubble dynamics near the sonoluminescence threshold,” Ultrasonics 36(1), 575–580 (1998).CrossRef
7.
go back to reference N. V. Dezhkunov, “Multibubble sonoluminescence intensity dependence on liquid temperature at different ultrasound intensities,” Ultrasonics Sonochemistry, 9(2), 103–106 (2002).CrossRef N. V. Dezhkunov, “Multibubble sonoluminescence intensity dependence on liquid temperature at different ultrasound intensities,” Ultrasonics Sonochemistry, 9(2), 103–106 (2002).CrossRef
8.
go back to reference M. Germano, A. Alippi, A. Bettucci, F. Brizi, and D. Passeri, “Water temperature dependence of single bubble sonoluminescence threshold,” Ultrasonics 50(1), 81–83 (2009).CrossRef M. Germano, A. Alippi, A. Bettucci, F. Brizi, and D. Passeri, “Water temperature dependence of single bubble sonoluminescence threshold,” Ultrasonics 50(1), 81–83 (2009).CrossRef
9.
go back to reference Li Tongbao, Ge Caoyan, Cheng Qian, et al., “Single bubble sonoluminescence,” J. Tongji Univ. (Natural Science Edition) 30(4), 504–509 (2002). Li Tongbao, Ge Caoyan, Cheng Qian, et al., “Single bubble sonoluminescence,” J. Tongji Univ. (Natural Science Edition) 30(4), 504–509 (2002).
10.
go back to reference T. Levinsen Mogens, “Data collapse of the spectra of water-based stable single-bubble sonoluminescence,” Phys. Rev. E 82(3, Pt 2), 036323 (2011).ADSCrossRef T. Levinsen Mogens, “Data collapse of the spectra of water-based stable single-bubble sonoluminescence,” Phys. Rev. E 82(3, Pt 2), 036323 (2011).ADSCrossRef
11.
go back to reference G. L. Sharipov, L. R. Yakshembetova, and A. M. Abdrakhmanov, “The influence of the temperature of a liquid on multibubble sonoluminescence of Tb3+ ions in an aqueous solution,” Russian J. Phys. Chem. A 86(7), 1174–1176 (2012).ADSCrossRef G. L. Sharipov, L. R. Yakshembetova, and A. M. Abdrakhmanov, “The influence of the temperature of a liquid on multibubble sonoluminescence of Tb3+ ions in an aqueous solution,” Russian J. Phys. Chem. A 86(7), 1174–1176 (2012).ADSCrossRef
12.
go back to reference Zhang Jian, “Research on cavitation thermal effect and noise of hydraulic conical throttle valve,” Harbin Institute of Technology, Dissertation (2014). Zhang Jian, “Research on cavitation thermal effect and noise of hydraulic conical throttle valve,” Harbin Institute of Technology, Dissertation (2014).
13.
go back to reference C. Cairós et al., “Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions,” Ultrasonics Sonochemistry 21(6), 2044–2051 (2014).CrossRef C. Cairós et al., “Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions,” Ultrasonics Sonochemistry 21(6), 2044–2051 (2014).CrossRef
14.
go back to reference A. Thiemann et al., “Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid,” Ultrasonics Sonochemistry 34, 663–676 (2017).CrossRef A. Thiemann et al., “Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid,” Ultrasonics Sonochemistry 34, 663–676 (2017).CrossRef
15.
go back to reference Zhang Jian, Jiang Jihai, Baiyunfeng, and Li Yanjie, “Simulation and test of pressure characteristics of conical throttle valves,” J. Huazhong Univ. of Science and Technology (Natural Science Edition) 43 (4), 64–68 (2015).ADS Zhang Jian, Jiang Jihai, Baiyunfeng, and Li Yanjie, “Simulation and test of pressure characteristics of conical throttle valves,” J. Huazhong Univ. of Science and Technology (Natural Science Edition) 43 (4), 64–68 (2015).ADS
16.
go back to reference Jiao Junjie, He Yong, Pan Xuchao, He Yuan, and Wang Chuanting,”Analysis on the factors that influence bubble coalescence in an acoustic field,” Chinese J. Acoustics 35(01), 48–56 (2016). Jiao Junjie, He Yong, Pan Xuchao, He Yuan, and Wang Chuanting,”Analysis on the factors that influence bubble coalescence in an acoustic field,” Chinese J. Acoustics 35(01), 48–56 (2016).
17.
go back to reference M. Pishbini and R. Sadighi-Bonabi, “A new source of radiation in single-bubble sonoluminescence,” Pramana J. Physics 88(724), 72 (2017).ADSCrossRef M. Pishbini and R. Sadighi-Bonabi, “A new source of radiation in single-bubble sonoluminescence,” Pramana J. Physics 88(724), 72 (2017).ADSCrossRef
18.
go back to reference A. Borisenok and A. B. Medvedev, “Calculation of thermodynamic parameters and degree of ionization of nitrogen and its mixtures with argon in typical single-bubble sonoluminescence conditions,” Physics of Atomic Nuclei 80(9), 1525–1531 (2017).ADSCrossRef A. Borisenok and A. B. Medvedev, “Calculation of thermodynamic parameters and degree of ionization of nitrogen and its mixtures with argon in typical single-bubble sonoluminescence conditions,” Physics of Atomic Nuclei 80(9), 1525–1531 (2017).ADSCrossRef
19.
go back to reference Xiaojian Ma, Tianyu Xing, Biao Huang, Qiuhe Li, and Yifei Yang, “Combined experimental and theoretical investigation of the gas bubble motion in an acoustic field,” Ultrasonics – Sonochemistry 40, 480–487 (2018).CrossRef Xiaojian Ma, Tianyu Xing, Biao Huang, Qiuhe Li, and Yifei Yang, “Combined experimental and theoretical investigation of the gas bubble motion in an acoustic field,” Ultrasonics – Sonochemistry 40, 480–487 (2018).CrossRef
20.
go back to reference Wang Dexin and Naren Mandula, Theoretical study on acoustic cavitation characteristics of coupled double bubbles,” J. Physics 67(3), 231–238 (2018). Wang Dexin and Naren Mandula, Theoretical study on acoustic cavitation characteristics of coupled double bubbles,” J. Physics 67(3), 231–238 (2018).
21.
go back to reference R. I. Nigmatulin, A. A. Aganin, and D. Y. Toporkov, “Possibility of cavitation bubble supercompression in tetradecane,” Doklady Physics 63(8), 348–352 (2018).ADSCrossRef R. I. Nigmatulin, A. A. Aganin, and D. Y. Toporkov, “Possibility of cavitation bubble supercompression in tetradecane,” Doklady Physics 63(8), 348–352 (2018).ADSCrossRef
22.
go back to reference A. A. Aganin, M. A. Il’gamov, R. I. Nigmatulin, and D. Yu. Toporkov, “Evolution of distortions of the spherical shape of a cavitation bubble in acoustic supercompression,” Fluid Dynamics 45(1), 50–61 (2010).ADSMathSciNetCrossRef A. A. Aganin, M. A. Il’gamov, R. I. Nigmatulin, and D. Yu. Toporkov, “Evolution of distortions of the spherical shape of a cavitation bubble in acoustic supercompression,” Fluid Dynamics 45(1), 50–61 (2010).ADSMathSciNetCrossRef
23.
go back to reference R. I. Nigmatulin, R. T. Lahey Jr., R. P. Taleyarkhan, C. D. West, and R. C. Block, “On thermonuclear processes in cavitation bubbles,” Physics-Uspekhi 57(9), 877–890 (2014).ADSCrossRef R. I. Nigmatulin, R. T. Lahey Jr., R. P. Taleyarkhan, C. D. West, and R. C. Block, “On thermonuclear processes in cavitation bubbles,” Physics-Uspekhi 57(9), 877–890 (2014).ADSCrossRef
24.
go back to reference O. E. Ivashnyov, M. N. Ivashneva, and N. N. Smirnov, “Slow waves of boiling under hot water depressurization,” J. Fluid Mech. 413, 149–180 (2000).ADSCrossRef O. E. Ivashnyov, M. N. Ivashneva, and N. N. Smirnov, “Slow waves of boiling under hot water depressurization,” J. Fluid Mech. 413, 149–180 (2000).ADSCrossRef
25.
go back to reference O. E. Ivashnyov and N. N. Smirnov, “Thermal growth of a vapor bubble moving in a superheated liquid,” Fluid Dynamics 39(3), 414–428 (2004).ADSCrossRef O. E. Ivashnyov and N. N. Smirnov, “Thermal growth of a vapor bubble moving in a superheated liquid,” Fluid Dynamics 39(3), 414–428 (2004).ADSCrossRef
26.
go back to reference O. E. Ivashnyov, M. N. Ivashneva, and N. N. Smirnov, “Rarefaction waves in nonequilibrium-boiling fluid flows,” Fluid Dynamics 35(4), 485–495 (2000).ADSCrossRef O. E. Ivashnyov, M. N. Ivashneva, and N. N. Smirnov, “Rarefaction waves in nonequilibrium-boiling fluid flows,” Fluid Dynamics 35(4), 485–495 (2000).ADSCrossRef
27.
go back to reference V. M. Chernyavskii and A. A. Monakhov, “Continuity violation during the motion of a contact line: new experimental and theoretical results,” Doklady Physics 55(8), 423–425 (2010).ADSCrossRef V. M. Chernyavskii and A. A. Monakhov, “Continuity violation during the motion of a contact line: new experimental and theoretical results,” Doklady Physics 55(8), 423–425 (2010).ADSCrossRef
28.
go back to reference M. G. Rodio, M. G. De Giorgi, and A. Ficarella, “Influence of convective heat transfer modeling on the estimation of thermal effects in cryogenic cavitating flows,” Intern. J. Heat Mass Transfer 55, 6538–6554 (2012).CrossRef M. G. Rodio, M. G. De Giorgi, and A. Ficarella, “Influence of convective heat transfer modeling on the estimation of thermal effects in cryogenic cavitating flows,” Intern. J. Heat Mass Transfer 55, 6538–6554 (2012).CrossRef
29.
go back to reference N. N. Smirnov, V. B. Betelin, V. F. Nikitin, L. L. Stamov, and D. I. Altoukhov, “Accumulation of errors in numerical simulations of chemically reacting gas dynamics,” Acta Astronautica 117, 338–355 (2015).ADSCrossRef N. N. Smirnov, V. B. Betelin, V. F. Nikitin, L. L. Stamov, and D. I. Altoukhov, “Accumulation of errors in numerical simulations of chemically reacting gas dynamics,” Acta Astronautica 117, 338–355 (2015).ADSCrossRef
30.
go back to reference B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng. 269–289 (1990). B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng. 269–289 (1990).
Metadata
Title
Effect of Oil Viscosity on Hydraulic Cavitation Luminescence
Authors
Jian Zhang
Naiming Qi
Jihai Jiang
Publication date
01-05-2021
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 3/2021
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462821030125

Other articles of this Issue 3/2021

Fluid Dynamics 3/2021 Go to the issue

Premium Partners