Skip to main content
Top

2021 | OriginalPaper | Chapter

Effect of Particle Content and Temperature on Steady-State Creep in Thick Composite Cylinder

Authors : Gagandeep Singh Kohli, Tejeet Singh, Harwinder Singh

Published in: Advances in Metrology and Measurement of Engineering Surfaces

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present work, the effect of particle content and operating temperature on secondary stage creep in the thick composite cylinder is analyzed. The cylinder is made of Al-SiCp and is exposed to internal pressure only. Threshold’s creep law is used for creep analysis of the thick composite cylinder under plane stress. The analysis is carried out and results are obtained by varying material parameters. Marginal variations in radial, tangential and effective stresses are noticed. However, strain rates show considerable change by increasing the particle content and decreasing operating temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference You, Z., & Buttlar, W. G. (2005). Application of discrete element modeling techniques to predict complex modulus of asphalt-aggregate hollow cylinders subjected to internal pressure. Transportation Research Record, 1929, 218–226.CrossRef You, Z., & Buttlar, W. G. (2005). Application of discrete element modeling techniques to predict complex modulus of asphalt-aggregate hollow cylinders subjected to internal pressure. Transportation Research Record, 1929, 218–226.CrossRef
2.
go back to reference Singh, T., & Gupta, V. K. (2009). Effect of material parameters on steady state creep in a thick composite cylinder subjected to internal pressure. The Journal of Engineering Research, 6(2), 20–32.CrossRef Singh, T., & Gupta, V. K. (2009). Effect of material parameters on steady state creep in a thick composite cylinder subjected to internal pressure. The Journal of Engineering Research, 6(2), 20–32.CrossRef
3.
go back to reference Gupta, S. K., & Pathak, S. (2001). Thermo creep transition in a thick walled circular cylinder under internal pressure. Indian Journal of Pure and Applied Mathematics, 32(2), 237–253.MATH Gupta, S. K., & Pathak, S. (2001). Thermo creep transition in a thick walled circular cylinder under internal pressure. Indian Journal of Pure and Applied Mathematics, 32(2), 237–253.MATH
4.
go back to reference Hagihara, S., & Miyazaki, N. (2008). Finite element analysis for creep failure of coolant pipe in light water reactor due to local heating under severe accident condition. Nuclear Engineering and Design, 238(1), 33–40.CrossRef Hagihara, S., & Miyazaki, N. (2008). Finite element analysis for creep failure of coolant pipe in light water reactor due to local heating under severe accident condition. Nuclear Engineering and Design, 238(1), 33–40.CrossRef
5.
go back to reference Weir, C. D. (1957). The creep of thick-walled tube under internal pressure. Journal of Applied Mechanics, 24, 464–466.MATH Weir, C. D. (1957). The creep of thick-walled tube under internal pressure. Journal of Applied Mechanics, 24, 464–466.MATH
6.
go back to reference King, R. H., & Mackie, W. W. (1967). Creep of thick-walled cylinders. ASME Journal of Basic Engineering, 89(4), 877–884.CrossRef King, R. H., & Mackie, W. W. (1967). Creep of thick-walled cylinders. ASME Journal of Basic Engineering, 89(4), 877–884.CrossRef
7.
go back to reference Pai, D. H. (1967). Steady state creep analysis of thick walled orthotropic cylinders. International Journal of Mechanical Sciences, 9(6), 335–348.CrossRef Pai, D. H. (1967). Steady state creep analysis of thick walled orthotropic cylinders. International Journal of Mechanical Sciences, 9(6), 335–348.CrossRef
8.
go back to reference Bhatnagar, N. S., & Gupta, S. K. (1969). Analysis of thick-walled orthotropic cylinder in the theory of creep. Journal of the Physical Society of Japan, 27(6), 1655–1662.CrossRef Bhatnagar, N. S., & Gupta, S. K. (1969). Analysis of thick-walled orthotropic cylinder in the theory of creep. Journal of the Physical Society of Japan, 27(6), 1655–1662.CrossRef
9.
go back to reference Bhatnagar, N. S., Kulkarni, P. S., & Gupta, S. K. (1984). Creep analysis of an internally pressurized orthotropic rotating cylinder. Nuclear Engineering and Design, 83, 379–388.CrossRef Bhatnagar, N. S., Kulkarni, P. S., & Gupta, S. K. (1984). Creep analysis of an internally pressurized orthotropic rotating cylinder. Nuclear Engineering and Design, 83, 379–388.CrossRef
10.
go back to reference Basak, A. K., Pramanik, A., & Prakash, C. (2019). Deformation and strengthening of SiC reinforced Al-MMCs during in-situ micro-pillar compression. Materials Science and Engineering: A, 763, 138141. Basak, A. K., Pramanik, A., & Prakash, C. (2019). Deformation and strengthening of SiC reinforced Al-MMCs during in-situ micro-pillar compression. Materials Science and Engineering: A763, 138141.
11.
go back to reference Prakash, C., Singh, S., Sharma, S., Garg, H., Singh, J., Kumar, H., & Singh, G. (2020). Fabrication of aluminium carbon nano tube silicon carbide particles based hybrid nano-composite by spark plasma sintering. Materials Today: Proceedings, 21, 1637–1642. Prakash, C., Singh, S., Sharma, S., Garg, H., Singh, J., Kumar, H., & Singh, G. (2020). Fabrication of aluminium carbon nano tube silicon carbide particles based hybrid nano-composite by spark plasma sintering. Materials Today: Proceedings21, 1637–1642.
12.
go back to reference You, L. H., Ou, H., & Zheng, Z. Y. (2007). Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure. Composite Structures, 78, 285–291.CrossRef You, L. H., Ou, H., & Zheng, Z. Y. (2007). Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure. Composite Structures, 78, 285–291.CrossRef
13.
go back to reference Chen, Y. Z., & Lin, X. Y. (2008). Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials. Computational Material Science, 44, 581–587.CrossRef Chen, Y. Z., & Lin, X. Y. (2008). Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials. Computational Material Science, 44, 581–587.CrossRef
14.
go back to reference Singla, A., Garg, M., Deepak, D., & Gupta, V. K. (2012). Creep modeling in an orthotropic FGM cylinder. ARME, 1(2), 55–61. Singla, A., Garg, M., Deepak, D., & Gupta, V. K. (2012). Creep modeling in an orthotropic FGM cylinder. ARME, 1(2), 55–61.
15.
go back to reference Jamian, S., Sato, H., Tsukamoto, H., & Watanabe, Y. (2013). Creep analysis of functionally graded material thick walled cylinder. Applied Mechanics and Materials, 315, 867–871.CrossRef Jamian, S., Sato, H., Tsukamoto, H., & Watanabe, Y. (2013). Creep analysis of functionally graded material thick walled cylinder. Applied Mechanics and Materials, 315, 867–871.CrossRef
16.
go back to reference Nejad, M. Z., Hoseini, Z., Niknejad, A., & Ghannad, M. (2015). Steady state creep deformations and stresses in FGM rotating thick cylindrical pressure vessels. Journal of Mechanics, 31(1), 1–6.CrossRef Nejad, M. Z., Hoseini, Z., Niknejad, A., & Ghannad, M. (2015). Steady state creep deformations and stresses in FGM rotating thick cylindrical pressure vessels. Journal of Mechanics, 31(1), 1–6.CrossRef
17.
go back to reference Gupta VK, Singh SB, Chandrawat HN and Ray S. Modeling of creep behavior of a rotating disc in presence of both composition and thermal gradients. ASME The Journal of Engineering Materials and Technology, 127(1), 97–105 (2005). Gupta VK, Singh SB, Chandrawat HN and Ray S. Modeling of creep behavior of a rotating disc in presence of both composition and thermal gradients. ASME The Journal of Engineering Materials and Technology, 127(1), 97–105 (2005).
18.
go back to reference Pandey, A. B., Mishra, R. S., & Mahajan, Y. R. (1992). Steady state creep behavior of silicon carbide particulate reinforced aluminum composites. Acta Metallurgica et Materialia, 40(8), 2045–2052.CrossRef Pandey, A. B., Mishra, R. S., & Mahajan, Y. R. (1992). Steady state creep behavior of silicon carbide particulate reinforced aluminum composites. Acta Metallurgica et Materialia, 40(8), 2045–2052.CrossRef
19.
go back to reference Dieter, G. E. (1988). Mechanical metallurgy. London: McGraw-Hill. Dieter, G. E. (1988). Mechanical metallurgy. London: McGraw-Hill.
20.
go back to reference Li, Y., & Langdon, T. G. (1999). An examination of a substructure-invariant model for the creep of metal matrix composites. Materials Science and Engineering: A, 265(1), 276–284.CrossRef Li, Y., & Langdon, T. G. (1999). An examination of a substructure-invariant model for the creep of metal matrix composites. Materials Science and Engineering: A, 265(1), 276–284.CrossRef
Metadata
Title
Effect of Particle Content and Temperature on Steady-State Creep in Thick Composite Cylinder
Authors
Gagandeep Singh Kohli
Tejeet Singh
Harwinder Singh
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5151-2_13

Premium Partners