Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 5-6/2019

31-10-2019 | ORIGINAL ARTICLE

Effect of polygon order on additively manufactured lattice structures: a method for defining the threshold resolution for lattice geometry

Authors: A. Alghamdi, B. Lozanovski, M. McMillan, R. Tino, D. Downing, X. Zhang, I. Kelbassa, P. Choong, M. Qian, M. Brandt, M. Leary

Published in: The International Journal of Advanced Manufacturing Technology | Issue 5-6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Additive manufacture (AM) enables the fabrication of highly efficient lattice structures. However, the mathematical efficiency of characterising AM lattice geometry can be poor, potentially restricting the commercial application of AM lattice structures. This research quantifies the effect of the polygon order used to characterise the geometric resolution of lattice strut elements on the associated manufacturability and geometric qualities of the manufactured lattice. The effect of these design parameters on manufactured quality is experimentally determined for aluminium and titanium specimens fabricated by selective laser melting (SLM), although the method can be generally applied to any AM technology. This research finds that geometric thresholds exist, below which additional geometric resolution does not result in increased part quality. These thresholds are a function of material, lattice inclination angle, cross-sectional area and the polynomial order used to represent the cross section. These findings enable significantly reduced computational cost in managing AM lattice structures, and can be directly integrated with algorithmic methods for the optimisation of AM lattice structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahn D, Kim H, Lee S (2009) Surface roughness prediction using measured data and interpolation in layered manufacturing. J Mater Process Technol 209(2):664–671CrossRef Ahn D, Kim H, Lee S (2009) Surface roughness prediction using measured data and interpolation in layered manufacturing. J Mater Process Technol 209(2):664–671CrossRef
2.
go back to reference ASTM standard F2792-12a, D (2012) F2792-12a. Standard terminology for additive manufacturing technologies. ASTM International, West Conshohocken ASTM standard F2792-12a, D (2012) F2792-12a. Standard terminology for additive manufacturing technologies. ASTM International, West Conshohocken
3.
go back to reference Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162CrossRef Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162CrossRef
4.
go back to reference Brandt M, Sun SJ, Leary M, Feih S, Elambasseril J, Liu QC (2013) High-value SLM aerospace components: from design to manufacture. Adv Mater Res 633:135–147CrossRef Brandt M, Sun SJ, Leary M, Feih S, Elambasseril J, Liu QC (2013) High-value SLM aerospace components: from design to manufacture. Adv Mater Res 633:135–147CrossRef
5.
go back to reference Clijsters S, Craeghs T, Buls S, Kempen K, Kruth JP (2014) In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int J Adv Manuf Technol 75(5-8):1089–1101CrossRef Clijsters S, Craeghs T, Buls S, Kempen K, Kruth JP (2014) In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int J Adv Manuf Technol 75(5-8):1089–1101CrossRef
6.
go back to reference Croft HT (1991) Unsolved problems in geometry: unsolved problems in intuitive mathematics. Springer New York, New YorkCrossRef Croft HT (1991) Unsolved problems in geometry: unsolved problems in intuitive mathematics. Springer New York, New YorkCrossRef
7.
go back to reference Drizo A, Pegna J (2006) Environmental impacts of rapid prototyping: an overview of research to date. Rapid Prototyp J 12(2):64–71CrossRef Drizo A, Pegna J (2006) Environmental impacts of rapid prototyping: an overview of research to date. Rapid Prototyp J 12(2):64–71CrossRef
8.
go back to reference Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef
9.
go back to reference Gebhardt A, Schmidt F-M, Hötter J-S, Sokalla W, Sokalla P (2010) Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry. Phys Procedia 5:543–549CrossRef Gebhardt A, Schmidt F-M, Hötter J-S, Sokalla W, Sokalla P (2010) Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry. Phys Procedia 5:543–549CrossRef
10.
go back to reference Gibson R, Stucker (2010) Additive manufacturing technologies - rapid prototyping to direct digital manufacturingCrossRef Gibson R, Stucker (2010) Additive manufacturing technologies - rapid prototyping to direct digital manufacturingCrossRef
11.
go back to reference Gibson I, Rosen D, Stucker B (2015) Powder Bed Fusion Processes, in Additive Manufacturing Technologies. Springer pp 107–145 Gibson I, Rosen D, Stucker B (2015) Powder Bed Fusion Processes, in Additive Manufacturing Technologies. Springer pp 107–145
12.
go back to reference Hiller JD, Lipson H (2009) STL 2.0: a proposal for a universal multi-material additive manufacturing file format. In: Proceedings of the Solid Freeform Fabrication Symposium Hiller JD, Lipson H (2009) STL 2.0: a proposal for a universal multi-material additive manufacturing file format. In: Proceedings of the Solid Freeform Fabrication Symposium
13.
go back to reference ISO/ASTM (2015) Additive manufacturing — general principles — terminology. 52900. ISO/ASTM, Geneva 52900 ISO/ASTM (2015) Additive manufacturing — general principles — terminology. 52900. ISO/ASTM, Geneva 52900
14.
go back to reference ISO/ASTM (2016) Standard specification for additive manufacturing file format (AMF) version 1.2 ISO/ASTM (2016) Standard specification for additive manufacturing file format (AMF) version 1.2
15.
go back to reference Jywe W-Y, Liu C-H, Chen C o-K (1999) The min–max problem for evaluating the form error of a circle. Measurement 26(4):273–282CrossRef Jywe W-Y, Liu C-H, Chen C o-K (1999) The min–max problem for evaluating the form error of a circle. Measurement 26(4):273–282CrossRef
16.
go back to reference Leary M, Babaee M, Brandt M, Subic A (2013) Feasible build orientations for self-supporting fused deposition manufacture: a novel approach to space-filling tesselated geometries. Adv Mater Res 633:148–168CrossRef Leary M, Babaee M, Brandt M, Subic A (2013) Feasible build orientations for self-supporting fused deposition manufacture: a novel approach to space-filling tesselated geometries. Adv Mater Res 633:148–168CrossRef
17.
go back to reference Ma D, Lin F, Chua CK (2001) Rapid prototyping applications in medicine. Part 2: STL file generation and case studies. Int J Adv Manuf Technol 18:118–127CrossRef Ma D, Lin F, Chua CK (2001) Rapid prototyping applications in medicine. Part 2: STL file generation and case studies. Int J Adv Manuf Technol 18:118–127CrossRef
18.
go back to reference Mani K, Kulkarni P, Dutta D (1999) Region-based adaptive slicing . Computer-Aided Design 31: 317–333CrossRef Mani K, Kulkarni P, Dutta D (1999) Region-based adaptive slicing . Computer-Aided Design 31: 317–333CrossRef
19.
go back to reference Marcu T, Todea M, Gligor I, Berce P, Popa C (2012) Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications. Appl Surf Sci 258(7):3276–3282CrossRef Marcu T, Todea M, Gligor I, Berce P, Popa C (2012) Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications. Appl Surf Sci 258(7):3276–3282CrossRef
20.
go back to reference Mazur M, Leary M, Sun S, Vcelka M, Shidid D, Brandt M (2016) Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 84:1391–1411 Mazur M, Leary M, Sun S, Vcelka M, Shidid D, Brandt M (2016) Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 84:1391–1411
21.
go back to reference Mazur M, Leary M, McMillan M, Elambasseril J, Brandt M (2016a) SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp J 22(3):504–518CrossRef Mazur M, Leary M, McMillan M, Elambasseril J, Brandt M (2016a) SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp J 22(3):504–518CrossRef
22.
go back to reference Mazur M, Leary M, McMillan M, Sun S, Shidid D, Brandt M (2016b) Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by selective laser melting (SLM). Laser Additive Manufacturing: Materials, Design, Technologies, and Applications: 119–161CrossRef Mazur M, Leary M, McMillan M, Sun S, Shidid D, Brandt M (2016b) Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by selective laser melting (SLM). Laser Additive Manufacturing: Materials, Design, Technologies, and Applications: 119–161CrossRef
23.
go back to reference Mazur M, Brincat P, Leary M, Brandt M (2017) Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. Int J Adv Manuf Technol:1–20 Mazur M, Brincat P, Leary M, Brandt M (2017) Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. Int J Adv Manuf Technol:1–20
24.
go back to reference McMillan ML, Jurg M, Leary M, Brandt M (2017a) Programmatic generation of computationally efficient lattice structures for additive manufacture. Rapid Prototyp J 23(3):486–494CrossRef McMillan ML, Jurg M, Leary M, Brandt M (2017a) Programmatic generation of computationally efficient lattice structures for additive manufacture. Rapid Prototyp J 23(3):486–494CrossRef
25.
go back to reference McMillan M, Leary M, Brandt M (2017b) Computationally efficient finite difference method for metal additive manufacturing: a reduced-order DFAM tool applied to SLM. Mater Des 132:226–243CrossRef McMillan M, Leary M, Brandt M (2017b) Computationally efficient finite difference method for metal additive manufacturing: a reduced-order DFAM tool applied to SLM. Mater Des 132:226–243CrossRef
26.
go back to reference Promoppatum P, Onler R, Yao S-C (2017) Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V products. J Mater Process Technol 240:262–273CrossRef Promoppatum P, Onler R, Yao S-C (2017) Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V products. J Mater Process Technol 240:262–273CrossRef
27.
go back to reference Sexton L, Lavin S, Byrne G, Kennedy A (2002) Laser cladding of aerospace materials. J Mater Process Technol 122(1):63–68CrossRef Sexton L, Lavin S, Byrne G, Kennedy A (2002) Laser cladding of aerospace materials. J Mater Process Technol 122(1):63–68CrossRef
28.
go back to reference Shidid D, Leary M, Choong P, Brandt M (2016) Just-in-time design and additive manufacture of patient-specific medical implants. Phys Procedia 83:4–14CrossRef Shidid D, Leary M, Choong P, Brandt M (2016) Just-in-time design and additive manufacture of patient-specific medical implants. Phys Procedia 83:4–14CrossRef
29.
go back to reference Strano G, Hao L, Everson RM, Evans KE (2013) Surface roughness analysis, modelling and prediction in selective laser melting. J Mater Process Technol 213(4):589–597CrossRef Strano G, Hao L, Everson RM, Evans KE (2013) Surface roughness analysis, modelling and prediction in selective laser melting. J Mater Process Technol 213(4):589–597CrossRef
30.
go back to reference Vaithilingam J, Kilsby S, Goodridge RD, Christie SD, Edmondson S, Hague RJ (2015) Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound. Mater Sci Eng C Mater Biol Appl 46:52–61CrossRef Vaithilingam J, Kilsby S, Goodridge RD, Christie SD, Edmondson S, Hague RJ (2015) Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound. Mater Sci Eng C Mater Biol Appl 46:52–61CrossRef
31.
go back to reference Vandenbroucke B, Kruth JP (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13(4):196–203CrossRef Vandenbroucke B, Kruth JP (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13(4):196–203CrossRef
32.
go back to reference Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141CrossRef Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141CrossRef
33.
go back to reference Williams CB, Cochran JK, Rosen DW (2010) Additive manufacturing of metallic cellular materials via three-dimensional printing. Int J Adv Manuf Technol 53(1-4):231–239CrossRef Williams CB, Cochran JK, Rosen DW (2010) Additive manufacturing of metallic cellular materials via three-dimensional printing. Int J Adv Manuf Technol 53(1-4):231–239CrossRef
34.
go back to reference Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012:1–10CrossRef Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012:1–10CrossRef
35.
go back to reference Zhai Y, Lados DA, LaGoy JL (2014) Additive manufacturing: making imagination the major limitation. Jom 66(5):808–816CrossRef Zhai Y, Lados DA, LaGoy JL (2014) Additive manufacturing: making imagination the major limitation. Jom 66(5):808–816CrossRef
Metadata
Title
Effect of polygon order on additively manufactured lattice structures: a method for defining the threshold resolution for lattice geometry
Authors
A. Alghamdi
B. Lozanovski
M. McMillan
R. Tino
D. Downing
X. Zhang
I. Kelbassa
P. Choong
M. Qian
M. Brandt
M. Leary
Publication date
31-10-2019
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 5-6/2019
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04168-1

Other articles of this Issue 5-6/2019

The International Journal of Advanced Manufacturing Technology 5-6/2019 Go to the issue

Premium Partners