Skip to main content
Top
Published in: Wireless Personal Communications 4/2023

22-05-2023

Effect of Relay-based Communication on Probability of Detection for Spectrum Sensing in LoRaWAN

Authors: Hafsa Rafiqi, Garima Mahendru, Sindhu Hak Gupta

Published in: Wireless Personal Communications | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The internet of things (IoT) may be considered as an emerging paradigm that has led to the transformation of the physical world into an advanced system comprising interconnected devices on an unparalleled scale. To accommodate the spectrum, need of these numerous IoT devices concept of cognitive radio technology may be considered a boon. The cognitive radio (CR) aims to alleviate the spectrum crunch problem through detection of the available spectrum holes and their efficient utilization. This paper incorporates the spectrum sensing concept in the LoRaWAN network for better utilization of the spectrum. A non-relay and relay-based type of communication has been investigated to analyze the enhancement in the detection probability of the sensing technique for a LoRaWAN network in terms of minimal sensing time, maximum coverage, and low signal-to-noise (SNR). The effect of sensing time, distance and SNR on detection probability for 915 MHz and 866.4 MHz LoRa bands has been analyzed and critically evaluated at uplink bandwidth of 125 kHz and 250 kHz respectively using MATLAB. The simulated results validate the performance improvement through multiple relays in a LoRaWAN communication model in context to a higher probability of detection for energy detection-based spectrum sensing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ejaz, W., & Ibnkahla, M. (2018). Multiband spectrum sensing and resource allocation for IoT in cognitive 5G networks. IEEE Internet of Things Journal, 5(1), 150–163.CrossRef Ejaz, W., & Ibnkahla, M. (2018). Multiband spectrum sensing and resource allocation for IoT in cognitive 5G networks. IEEE Internet of Things Journal, 5(1), 150–163.CrossRef
2.
go back to reference Ahmed, R., et al. (2021). CR-IoTNet: Machine learning based joint spectrum sensing and allocation for cognitive radio enabled IoT cellular networks. Ad Hoc Networks, 112, 102390.CrossRef Ahmed, R., et al. (2021). CR-IoTNet: Machine learning based joint spectrum sensing and allocation for cognitive radio enabled IoT cellular networks. Ad Hoc Networks, 112, 102390.CrossRef
3.
go back to reference Salahdine, F., & El Ghazi, H. (2017). A real time spectrum scanning technique based on compressive sensing for cognitive radio networks. In IEEE 8th annual ubiquitous computing, electronics and mobile communication conference (UEMCON) (pp. 506–511). Salahdine, F., & El Ghazi, H. (2017). A real time spectrum scanning technique based on compressive sensing for cognitive radio networks. In IEEE 8th annual ubiquitous computing, electronics and mobile communication conference (UEMCON) (pp. 506–511).
4.
go back to reference Wan, R., et al. (2020). Energy-efficient cooperative spectrum sensing scheme based on spatial correlation for cognitive internet of things. IEEE Access, 8, 139501–139511.CrossRef Wan, R., et al. (2020). Energy-efficient cooperative spectrum sensing scheme based on spatial correlation for cognitive internet of things. IEEE Access, 8, 139501–139511.CrossRef
5.
go back to reference FCC, Federal Communications Commission Spectrum Policy Task Force, Report of the Spectrum Efficiency Working Group. Technical report. USA (2002). FCC, Federal Communications Commission Spectrum Policy Task Force, Report of the Spectrum Efficiency Working Group. Technical report. USA (2002).
6.
go back to reference Lu, L., et al. (2012). Ten years of research in spectrum sensing and sharing in cognitive radio. EURASIP Journal on Wireless Communications and Networking, 28, 1–16. Lu, L., et al. (2012). Ten years of research in spectrum sensing and sharing in cognitive radio. EURASIP Journal on Wireless Communications and Networking, 28, 1–16.
7.
go back to reference Zeng, Y., et al. (2010). A review on spectrum sensing for cognitive radio: Challenges and solutions. EURASIP Journal on Advances in Signal Processing, 2010, 1–15.CrossRef Zeng, Y., et al. (2010). A review on spectrum sensing for cognitive radio: Challenges and solutions. EURASIP Journal on Advances in Signal Processing, 2010, 1–15.CrossRef
8.
go back to reference Shellhammer, S. J. (2008). Spectrum sensing in IEEE 802.22. IAPR workshop cognitive information processing (pp. 9–10). Shellhammer, S. J. (2008). Spectrum sensing in IEEE 802.22. IAPR workshop cognitive information processing (pp. 9–10).
9.
go back to reference Sobron, I., et al. (2015). Energy detection technique for adaptive spectrum sensing. IEEE Transactions on Communications, 63(3), 617–627.CrossRef Sobron, I., et al. (2015). Energy detection technique for adaptive spectrum sensing. IEEE Transactions on Communications, 63(3), 617–627.CrossRef
10.
go back to reference Liu, X., et al. (2020). Cooperative spectrum sensing optimization in energy-harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 19(11), 7663–7676.CrossRef Liu, X., et al. (2020). Cooperative spectrum sensing optimization in energy-harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 19(11), 7663–7676.CrossRef
11.
go back to reference Li, Z., et al. (2018). Dynamic compressive wide-band spectrum sensing based on channel energy reconstruction in cognitive internet of things. IEEE Transactions on Industrial Informatics, 14(6), 2598–2607.CrossRef Li, Z., et al. (2018). Dynamic compressive wide-band spectrum sensing based on channel energy reconstruction in cognitive internet of things. IEEE Transactions on Industrial Informatics, 14(6), 2598–2607.CrossRef
12.
go back to reference Hossain, M. A., Schukat, M., & Barrett, E. (2021). A reliable energy and spectral efficient spectrum sensing approach for cognitive radio based IoT networks. In 2021 IEEE 11th annual computing and communication workshop and conference (CCWC) (pp. 1569–1576). Hossain, M. A., Schukat, M., & Barrett, E. (2021). A reliable energy and spectral efficient spectrum sensing approach for cognitive radio based IoT networks. In 2021 IEEE 11th annual computing and communication workshop and conference (CCWC) (pp. 1569–1576).
13.
go back to reference Zhang, L., Liang, Y.-C., & Xiao, M. (2018). Spectrum sharing for internet of things: A survey. IEEE Wireless Communications, 26(3), 132–139.CrossRef Zhang, L., Liang, Y.-C., & Xiao, M. (2018). Spectrum sharing for internet of things: A survey. IEEE Wireless Communications, 26(3), 132–139.CrossRef
14.
go back to reference Mekuria, F., & Mfupe, L. (2019). Spectrum sharing for unlicensed 5G networks. IEEE Wireless Communications and Networking Conference (WCNC), 2019, 1–5. Mekuria, F., & Mfupe, L. (2019). Spectrum sharing for unlicensed 5G networks. IEEE Wireless Communications and Networking Conference (WCNC), 2019, 1–5.
15.
go back to reference Bayhan, S., Gür, G., & Zubow, A. (2018). The future is unlicensed: Coexistence in the unlicensed spectrum for 5g. arXiv preprint arXiv:1801.04964. Bayhan, S., Gür, G., & Zubow, A. (2018). The future is unlicensed: Coexistence in the unlicensed spectrum for 5g. arXiv preprint arXiv:​1801.​04964.
16.
go back to reference Kumar, A., & Kumar, K. (2020). Multiple access schemes for cognitive radio networks: A survey. Physical Communication, 38, 100953.CrossRef Kumar, A., & Kumar, K. (2020). Multiple access schemes for cognitive radio networks: A survey. Physical Communication, 38, 100953.CrossRef
17.
go back to reference Hossain, M. A., et al. (2021). Spectrum sensing challenges and their solutions in cognitive radio based vehicular networks. International Journal of Communication Systems, 34(7), e4748.CrossRef Hossain, M. A., et al. (2021). Spectrum sensing challenges and their solutions in cognitive radio based vehicular networks. International Journal of Communication Systems, 34(7), e4748.CrossRef
18.
go back to reference Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.CrossRef Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.CrossRef
19.
go back to reference Subhedar, M., & Birajdar, G. (2011). Spectrum sensing techniques in cognitive radio networks: A survey. International Journal of Next-Generation Networks, 3(2), 37–51.CrossRef Subhedar, M., & Birajdar, G. (2011). Spectrum sensing techniques in cognitive radio networks: A survey. International Journal of Next-Generation Networks, 3(2), 37–51.CrossRef
20.
go back to reference Kumar, R. (2014). Analysis of spectrum sensing techniques in cognitive radio. International Journal of Information and Computation Technology, 4(4), 437–444.MathSciNet Kumar, R. (2014). Analysis of spectrum sensing techniques in cognitive radio. International Journal of Information and Computation Technology, 4(4), 437–444.MathSciNet
21.
go back to reference Eappen, G., & Shankar, T. (2020). Hybrid PSO-GSA for energy efficient spectrum sensing in cognitive radio network. Physical Communication, 40, 101091.CrossRef Eappen, G., & Shankar, T. (2020). Hybrid PSO-GSA for energy efficient spectrum sensing in cognitive radio network. Physical Communication, 40, 101091.CrossRef
22.
go back to reference Develi, I. (2020). Spectrum sensing in cognitive radio networks: Threshold optimization and analysis. EURASIP Journal on Wireless Communications and Networking, 1, 1–19. Develi, I. (2020). Spectrum sensing in cognitive radio networks: Threshold optimization and analysis. EURASIP Journal on Wireless Communications and Networking, 1, 1–19.
23.
go back to reference Kumar, A., Pandit, S., & Singh, G. (2021). Threshold selection analysis of spectrum sensing for cognitive radio network with censoring based imperfect reporting channels. Wireless Networks, 1, 961–980.CrossRef Kumar, A., Pandit, S., & Singh, G. (2021). Threshold selection analysis of spectrum sensing for cognitive radio network with censoring based imperfect reporting channels. Wireless Networks, 1, 961–980.CrossRef
24.
go back to reference Raychowdhury, A., & Pramanik, A. (2020). Survey on LoRa technology: Solution for internet of things. In Intelligent systems, technologies and applications (pp. 259–271). Raychowdhury, A., & Pramanik, A. (2020). Survey on LoRa technology: Solution for internet of things. In Intelligent systems, technologies and applications (pp. 259–271).
25.
go back to reference Guo, Q., Yang, F., & Wei, J. (2021). Experimental evaluation of the packet reception performance of LoRa. Sensors, 21(4), 1071.CrossRef Guo, Q., Yang, F., & Wei, J. (2021). Experimental evaluation of the packet reception performance of LoRa. Sensors, 21(4), 1071.CrossRef
26.
go back to reference Hoeller, A., et al. (2018). Analysis and performance optimization of LoRa networks with time and antenna diversity. IEEE Access, 6, 32820–32829.CrossRef Hoeller, A., et al. (2018). Analysis and performance optimization of LoRa networks with time and antenna diversity. IEEE Access, 6, 32820–32829.CrossRef
27.
go back to reference Georgiou, O., & Raza, U. (2017). Low power wide area network analysis: Can LoRa scale. IEEE Wireless Communications Letters, 6(2), 162–165.CrossRef Georgiou, O., & Raza, U. (2017). Low power wide area network analysis: Can LoRa scale. IEEE Wireless Communications Letters, 6(2), 162–165.CrossRef
28.
go back to reference Nguyen, T. H., Jung, W. S., Tu, L. T., Van Chien, T., Yoo, D., & Ro, S. (2020). Performance analysis and optimization of the coverage probability in dual hop LoRa networks with different fading channels. IEEE Access, 8, 107087–107102.CrossRef Nguyen, T. H., Jung, W. S., Tu, L. T., Van Chien, T., Yoo, D., & Ro, S. (2020). Performance analysis and optimization of the coverage probability in dual hop LoRa networks with different fading channels. IEEE Access, 8, 107087–107102.CrossRef
29.
go back to reference Mahendru, G., Shukla, A., & Banerjee, P. (2020). A novel mathematical model for energy detection based spectrum sensing in cognitive radio networks. Wireless Personal Communications, 110(3), 1237–1249.CrossRef Mahendru, G., Shukla, A., & Banerjee, P. (2020). A novel mathematical model for energy detection based spectrum sensing in cognitive radio networks. Wireless Personal Communications, 110(3), 1237–1249.CrossRef
30.
go back to reference Salameh, H. A. B., et al. (2019). Spectrum assignment in hardware-constrained cognitive radio IoT networks under varying channel-quality conditions. IEEE Access, 7, 42816–42825.CrossRef Salameh, H. A. B., et al. (2019). Spectrum assignment in hardware-constrained cognitive radio IoT networks under varying channel-quality conditions. IEEE Access, 7, 42816–42825.CrossRef
Metadata
Title
Effect of Relay-based Communication on Probability of Detection for Spectrum Sensing in LoRaWAN
Authors
Hafsa Rafiqi
Garima Mahendru
Sindhu Hak Gupta
Publication date
22-05-2023
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2023
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10273-y

Other articles of this Issue 4/2023

Wireless Personal Communications 4/2023 Go to the issue