Skip to main content
Top
Published in: Journal of Materials Science 40/2022

13-10-2022 | Composites & nanocomposites

Effect of temperature on electrical and thermal conductivities of powder compacts: Ag-C and Ag-WC

Authors: Elodie Courtois, Philippe Rogeon, Vincent Keryvin, William Berckmans, Sophie Roure, Corinne Durand

Published in: Journal of Materials Science | Issue 40/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The influence of temperature on electrical and thermal conductivities of two materials from powder metallurgy, Ag-C and Ag-WC, is studied. The increase in conductivities with heating temperature at constant density is showed. The need to consider temperature in addition to density in the conductivity models is highlighted. The coupled mechanisms, of densification and of bonding diffusion, which are at the beginning of the improvement of conductivities, are discussed. A new phenomenological model for electrical and thermal conductivities, taking into account these mechanisms and their interplay, is proposed. The model parameters are estimated. The model makes it possible to correctly predict the increases in conductivity of metal powders during manufacturing stages: cold compaction, annealing, free or load-assisted sintering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Slavin AJ, Greenhalgh VA, Irvine ER, Marshall DB (2002) Theoretical model for the thermal conductivity of a packed bed of solid spheroids in the presence of a static gas, with no adjustable parameters except at low pressure and temperature. Int J Heat Mass Transf 45:4151–4161CrossRef Slavin AJ, Greenhalgh VA, Irvine ER, Marshall DB (2002) Theoretical model for the thermal conductivity of a packed bed of solid spheroids in the presence of a static gas, with no adjustable parameters except at low pressure and temperature. Int J Heat Mass Transf 45:4151–4161CrossRef
2.
go back to reference Bahrami M, Yovanovich M, Culham RJ (2006) Effective thermal conductivity of rough spherical packed beds. Int J Heat Mass Transf 49:3691–3701CrossRef Bahrami M, Yovanovich M, Culham RJ (2006) Effective thermal conductivity of rough spherical packed beds. Int J Heat Mass Transf 49:3691–3701CrossRef
3.
go back to reference M, F (2006) Conductivité thermique apparente des milieux granulaires soumis à des contraintes mécaniques : modélisation et mesures. PhD thesis, Institut National Polytechnique de Toulouse M, F (2006) Conductivité thermique apparente des milieux granulaires soumis à des contraintes mécaniques : modélisation et mesures. PhD thesis, Institut National Polytechnique de Toulouse
4.
go back to reference Tien CL, Vafai K (1978) Statistical upper and lower bounds of effective thermal conductivity of fibrous insulation. 2 AIA/ASME Thermophysics and Heat Transfert Conference, 780–874 Tien CL, Vafai K (1978) Statistical upper and lower bounds of effective thermal conductivity of fibrous insulation. 2 AIA/ASME Thermophysics and Heat Transfert Conference, 780–874
5.
go back to reference Wang J, Carson JK, North MF, Cleland DJ (2006) A new approach to modelling the effective thermal conductivity of heterogeneous materials. Int J Heat Mass Transf 49:3075–3083CrossRef Wang J, Carson JK, North MF, Cleland DJ (2006) A new approach to modelling the effective thermal conductivity of heterogeneous materials. Int J Heat Mass Transf 49:3075–3083CrossRef
6.
go back to reference Carson JK, Lovatt SJ, Tanner DJ, Cleland DJ (2005) Thermal conductivity bounds for isotropic, porous materials. Int J Heat Mass Transf 48:2150–2158CrossRef Carson JK, Lovatt SJ, Tanner DJ, Cleland DJ (2005) Thermal conductivity bounds for isotropic, porous materials. Int J Heat Mass Transf 48:2150–2158CrossRef
7.
go back to reference Liang Y (2015) Expression for effective thermal conductivity of randomly packed granular material. Int J Heat Mass Transf 90:1105–1108CrossRef Liang Y (2015) Expression for effective thermal conductivity of randomly packed granular material. Int J Heat Mass Transf 90:1105–1108CrossRef
8.
go back to reference Argento C, Bouvard D (1996) Modeling the effective thermal conductivity of random packing of spheres through densification. Int J Heat Mass Transf 39:1343–1350CrossRef Argento C, Bouvard D (1996) Modeling the effective thermal conductivity of random packing of spheres through densification. Int J Heat Mass Transf 39:1343–1350CrossRef
9.
go back to reference Atabaki N, Baliga BR (2007) Effective thermal conductivity of water-saturated sintered powder-metal plates. Heat Mass Transfer 44:85–99CrossRef Atabaki N, Baliga BR (2007) Effective thermal conductivity of water-saturated sintered powder-metal plates. Heat Mass Transfer 44:85–99CrossRef
10.
go back to reference Koh JC, Fortini A (1973) Prediction of thermal conductivity and electrical resistivity of porous metallic materials. Int J Heat Mass Transf 16:2013–2022CrossRef Koh JC, Fortini A (1973) Prediction of thermal conductivity and electrical resistivity of porous metallic materials. Int J Heat Mass Transf 16:2013–2022CrossRef
11.
go back to reference Aivazov MI, Domashnev IA (1968) Influence of porosity on the conductivity of hot-pressed titanium-nitride specimens. Proshkovaya Metall 8:51–54 Aivazov MI, Domashnev IA (1968) Influence of porosity on the conductivity of hot-pressed titanium-nitride specimens. Proshkovaya Metall 8:51–54
12.
go back to reference JC, M (1873) Electricity and magnetism. Clarendon Press Series. 1 JC, M (1873) Electricity and magnetism. Clarendon Press Series. 1
13.
go back to reference Bauer TH (1993) A general analytical approach toward the thermal conductivity of porous media. Int J Heat Mass Transf 36:4181–4191CrossRef Bauer TH (1993) A general analytical approach toward the thermal conductivity of porous media. Int J Heat Mass Transf 36:4181–4191CrossRef
14.
go back to reference Agapiou JS, DeVries MF (1989) An experimental determination of the thermal conductivity of a 304l stainless steel powder metallurgy material. J Heat Transfer 111:281–286CrossRef Agapiou JS, DeVries MF (1989) An experimental determination of the thermal conductivity of a 304l stainless steel powder metallurgy material. J Heat Transfer 111:281–286CrossRef
15.
go back to reference Hadley GR (1986) Thermal conductivity of packed metal powders. Int J Heat Mass Transf 29:909–920CrossRef Hadley GR (1986) Thermal conductivity of packed metal powders. Int J Heat Mass Transf 29:909–920CrossRef
16.
go back to reference Gonzo EE (2002) Estimating correlations for the effective thermal conductivity of granular materials. Chem Eng J 90:299–302CrossRef Gonzo EE (2002) Estimating correlations for the effective thermal conductivity of granular materials. Chem Eng J 90:299–302CrossRef
18.
go back to reference Montes JM, Cuevas FG, Cintas J (2008) Porosity effect on the electrical conductivity of sintered powder compacts. Appl Phys A 90:375–380CrossRef Montes JM, Cuevas FG, Cintas J (2008) Porosity effect on the electrical conductivity of sintered powder compacts. Appl Phys A 90:375–380CrossRef
19.
go back to reference Montes JM, Cuevas FG, Cintas J, Urban P (2011) Electrical conductivity of metal powders under pressure. Appl Phys A 105:935–947CrossRef Montes JM, Cuevas FG, Cintas J, Urban P (2011) Electrical conductivity of metal powders under pressure. Appl Phys A 105:935–947CrossRef
20.
go back to reference Ternero F, Caballero ES, Astacio R, Cintas J, Montes JM (2020) Nickel porous compacts obtained by medium-frequency electrical resistance sintering. Materials 13:2131CrossRef Ternero F, Caballero ES, Astacio R, Cintas J, Montes JM (2020) Nickel porous compacts obtained by medium-frequency electrical resistance sintering. Materials 13:2131CrossRef
21.
go back to reference Brisson E, Carre P, Desplats H, Rogeon P, Keryvin V, Bonhomme A (2016) Effective thermal and electrical conductivities of agsno2 during sintering. Part i: experimental characterization and mechanisms. Metall Mater Trans A 47:6304–6318CrossRef Brisson E, Carre P, Desplats H, Rogeon P, Keryvin V, Bonhomme A (2016) Effective thermal and electrical conductivities of agsno2 during sintering. Part i: experimental characterization and mechanisms. Metall Mater Trans A 47:6304–6318CrossRef
22.
go back to reference Brisson E, Carre P, Desplats H, Rogeon P, Keryvin V, Bonhomme A (2016) Effective thermal and electrical conductivities of agsno2 during sintering. Part ii: constitutive modeling and numerical simulation. Metall Mater Trans A 47:6319–6329CrossRef Brisson E, Carre P, Desplats H, Rogeon P, Keryvin V, Bonhomme A (2016) Effective thermal and electrical conductivities of agsno2 during sintering. Part ii: constitutive modeling and numerical simulation. Metall Mater Trans A 47:6319–6329CrossRef
23.
go back to reference Desplats H, Brisson E, Rogeon P, Carré P, Bonhomme A (2019) (2017) Pressureless sintering behavior and properties of Ag-SnO\(_2\). Rare metals 38:35–41CrossRef Desplats H, Brisson E, Rogeon P, Carré P, Bonhomme A (2019) (2017) Pressureless sintering behavior and properties of Ag-SnO\(_2\). Rare metals 38:35–41CrossRef
24.
go back to reference Jang B, Matsubara H (2006) Thermophysical properties of eb-pvd coatings and sintered ceramics of 4 mol\(\%\)\(y_2o_3\)-stabilized zirconia. J Allloys Compd 419:243–246CrossRef Jang B, Matsubara H (2006) Thermophysical properties of eb-pvd coatings and sintered ceramics of 4 mol\(\%\)\(y_2o_3\)-stabilized zirconia. J Allloys Compd 419:243–246CrossRef
25.
go back to reference Zhang X, Huang Y, Liu X, Yang L, Shi C, Wu Y, Tang W (2018) Microstructures and properties of 40cu/ag(invar) composites fabricated by powder metallurgy and subsequent thermo-mechanical treatment. Metall and Mater Trans A 49:1869–1878CrossRef Zhang X, Huang Y, Liu X, Yang L, Shi C, Wu Y, Tang W (2018) Microstructures and properties of 40cu/ag(invar) composites fabricated by powder metallurgy and subsequent thermo-mechanical treatment. Metall and Mater Trans A 49:1869–1878CrossRef
26.
go back to reference Ryu S-S, Lim J-T, Kim J-C, Kim YD, Moon I-H (1999) Effect of heat-treatment on the nanostructural change of w-cu powder prepared by mechanical alloying. Met Mater 5(2):175–178CrossRef Ryu S-S, Lim J-T, Kim J-C, Kim YD, Moon I-H (1999) Effect of heat-treatment on the nanostructural change of w-cu powder prepared by mechanical alloying. Met Mater 5(2):175–178CrossRef
27.
go back to reference Miao S, Xi ZM, Zhang T, Wang XP, Fang QF, Liu CS, Luo GN, Liu X, Lian YY (2016) Mechanical properties and thermal stability of rolled w-0.5wt%tic alloys. Mater Sci Eng A 671:87–95CrossRef Miao S, Xi ZM, Zhang T, Wang XP, Fang QF, Liu CS, Luo GN, Liu X, Lian YY (2016) Mechanical properties and thermal stability of rolled w-0.5wt%tic alloys. Mater Sci Eng A 671:87–95CrossRef
28.
go back to reference Hu L-F, Gu Q-F, Li Q, Zhang J-Y, Wu G-X (2018) Effect of extrusion temperature on microstructure, thermal conductivity and mechanical properties of a mg-ce-zn-zr alloy. J Alloy Compd 741:1222–1228CrossRef Hu L-F, Gu Q-F, Li Q, Zhang J-Y, Wu G-X (2018) Effect of extrusion temperature on microstructure, thermal conductivity and mechanical properties of a mg-ce-zn-zr alloy. J Alloy Compd 741:1222–1228CrossRef
29.
go back to reference Van Duong L, Anh NN, Trung TB, Chung LD, Huan NQ, Phuong MT, Minh PN, Phuong DD, Van Trinh P, et al (2020) Effect of annealing temperature on electrical and thermal property of cold-rolled multi-walled carbon nanotubes reinforced copper composites. Diam Related Mater. Vol 108 Van Duong L, Anh NN, Trung TB, Chung LD, Huan NQ, Phuong MT, Minh PN, Phuong DD, Van Trinh P, et al (2020) Effect of annealing temperature on electrical and thermal property of cold-rolled multi-walled carbon nanotubes reinforced copper composites. Diam Related Mater. Vol 108
30.
go back to reference Saboori A, Pavese M, Badini C, Fino P (2018) A novel cu-gnps nanocomposite with improved thermal and mechanical properties. Acta Metall Sin 31(2):148–152 (English Letters)CrossRef Saboori A, Pavese M, Badini C, Fino P (2018) A novel cu-gnps nanocomposite with improved thermal and mechanical properties. Acta Metall Sin 31(2):148–152 (English Letters)CrossRef
31.
go back to reference Shakibhamedan S, Sheibani S, Ataie A (2021) High performance cu matrix nanocomposite fabricated through spark plasma sintering of cu and cu-coated cnt. Met Mater Int 27(10):4271–4285CrossRef Shakibhamedan S, Sheibani S, Ataie A (2021) High performance cu matrix nanocomposite fabricated through spark plasma sintering of cu and cu-coated cnt. Met Mater Int 27(10):4271–4285CrossRef
32.
go back to reference SiDoLo Version 2.5298 - Notice D’utilisation SiDoLo Version 2.5298 - Notice D’utilisation
Metadata
Title
Effect of temperature on electrical and thermal conductivities of powder compacts: Ag-C and Ag-WC
Authors
Elodie Courtois
Philippe Rogeon
Vincent Keryvin
William Berckmans
Sophie Roure
Corinne Durand
Publication date
13-10-2022
Publisher
Springer US
Published in
Journal of Materials Science / Issue 40/2022
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-022-07811-7

Other articles of this Issue 40/2022

Journal of Materials Science 40/2022 Go to the issue

Premium Partners