Skip to main content
Top

2020 | OriginalPaper | Chapter

Effect of Uncertainty in the Hygrothermal Properties on Hygrothermal Modeling

Authors : Xiangwei Liu, Ying Liu, Xingguo Guo, Na Luo, Guojie Chen

Published in: Proceedings of the 11th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC 2019)

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Building envelopes are subject to the transient climate conditions. Moisture transfer which is coupled with heat transfer is an important issue in the field of building science. The moisture transfer and accumulation within building envelopes can lead to poor thermal performance, metal corrosion, wood decay, structure deterioration, microbial and mold growth. It is of great significance to investigate the hygrothermal behavior of building envelopes to improve the building energy efficiency, service life of buildings and indoor comfort. Though a lot of works have been done on the hygrothermal behavior of building materials, the experimental investigation is relatively lack. The hygrothermal properties of commonly used building materials which are the foundation of hygrothermal modeling often show a great uncertainty in the existing literatures. It may lead to significant discrepancy in the numerical results. In this paper, the local sensitivity analysis (LSA) method is used to investigate the effect of the uncertainty in hygrothermal properties, including the thermal conductivity, sorption isotherm, water vapor permeability and liquid water permeability, on the hygrothermal modeling. The results show that the uncertainty in the sorption isothermal and vapor permeability can lead to pretty high discrepancy in the distribution of the moisture content. The uncertainty in the sorption isothermal and vapor permeability causes relatively high error in temperature. These two properties must be determined accurately. The error caused by the uncertainty in liquid water permeability is limited since the relative humidity of the outdoor atmosphere is usually lower than 95% under which the capillary conduction is extremely weak.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Philip, J.R., Devries, D.A.: Moisture movement in porous materials under temperature gradients. Trans. Am. Geophys. Union 38(2), 222–232 (1957)CrossRef Philip, J.R., Devries, D.A.: Moisture movement in porous materials under temperature gradients. Trans. Am. Geophys. Union 38(2), 222–232 (1957)CrossRef
2.
go back to reference Luikov, A.V.: Heat and Mass Transfer in Capillary-Porous Bodies, pp. 75–99. Oxford, Pergamon (1966)MATH Luikov, A.V.: Heat and Mass Transfer in Capillary-Porous Bodies, pp. 75–99. Oxford, Pergamon (1966)MATH
3.
go back to reference Pedersen, C.: Prediction of moisture transfer in building constructions. Build. Environ. 27(3), 387–397 (1992)CrossRef Pedersen, C.: Prediction of moisture transfer in building constructions. Build. Environ. 27(3), 387–397 (1992)CrossRef
4.
go back to reference Künzel, H.M.: Simultaneous Heat and Moisture Transport in Building Components. Fraunhofer IRB Verlag, Suttgart Künzel, H.M.: Simultaneous Heat and Moisture Transport in Building Components. Fraunhofer IRB Verlag, Suttgart
5.
go back to reference Li, Q.R., Rao, J.W., Fazio, P.: Development of HAM tool for building envelope analysis. Build. Environ. 44(5), 1065–1073 (2009)CrossRef Li, Q.R., Rao, J.W., Fazio, P.: Development of HAM tool for building envelope analysis. Build. Environ. 44(5), 1065–1073 (2009)CrossRef
6.
go back to reference Liu, X.W., et al.: Numerical investigation for thermal performance of exterior walls of residential buildings with moisture transfer in hot summer and cold winter zone of China. Energy Build. 93, 259–268 (2015)CrossRef Liu, X.W., et al.: Numerical investigation for thermal performance of exterior walls of residential buildings with moisture transfer in hot summer and cold winter zone of China. Energy Build. 93, 259–268 (2015)CrossRef
7.
go back to reference Hens, H.: IEA Annex 14, Condensation and Energy, vol. 3: Catalogue of Material Properties. Leuven (1991) Hens, H.: IEA Annex 14, Condensation and Energy, vol. 3: Catalogue of Material Properties. Leuven (1991)
8.
go back to reference Kumaran, M.K.: IEA Annex 24, final report, Vol. 3, task 3: Material Properties. Leuven (1996) Kumaran, M.K.: IEA Annex 24, final report, Vol. 3, task 3: Material Properties. Leuven (1996)
9.
go back to reference Kumaran, M.K., et al.: Summary Report from Task 3 of MEWS Project at the Institute for Research in Construction-Hygrothermal Properties of Several Building Materials, pp 1–68. Ottawa, Canada (2002) Kumaran, M.K., et al.: Summary Report from Task 3 of MEWS Project at the Institute for Research in Construction-Hygrothermal Properties of Several Building Materials, pp 1–68. Ottawa, Canada (2002)
10.
go back to reference Kumaran, M.K.: A Thermal and moisture property database for common building and insulation materials. ASHRAE Trans. 112, 1–13 (2006) Kumaran, M.K.: A Thermal and moisture property database for common building and insulation materials. ASHRAE Trans. 112, 1–13 (2006)
11.
go back to reference Wu, Y.: Experimental study of hygrothermal properties for building materials. Dissertation, Concordia University (2007) Wu, Y.: Experimental study of hygrothermal properties for building materials. Dissertation, Concordia University (2007)
12.
go back to reference Talukdar, P., et al.: An experimental data set for benchmarking 1D heat and moisture transfer models of porous building materials. Part I: Experimental facility and material property data. Int. J. Heat Mass Transf. 50, 4527–4539 (2007) Talukdar, P., et al.: An experimental data set for benchmarking 1D heat and moisture transfer models of porous building materials. Part I: Experimental facility and material property data. Int. J. Heat Mass Transf. 50, 4527–4539 (2007)
13.
go back to reference James, C., et al.: Numerical and experimental data set for benchmarking hygroscopic buffering models. Int. J. Heat Mass Transf. 53, 3638–3654 (2010)CrossRef James, C., et al.: Numerical and experimental data set for benchmarking hygroscopic buffering models. Int. J. Heat Mass Transf. 53, 3638–3654 (2010)CrossRef
14.
go back to reference Desta, T.Z., Langmans, J., Roels, S.: Experimental data set for validation of heat, air and moisture transport models of building envelopes. Build. Environ. 46, 1038–1046 (2011)CrossRef Desta, T.Z., Langmans, J., Roels, S.: Experimental data set for validation of heat, air and moisture transport models of building envelopes. Build. Environ. 46, 1038–1046 (2011)CrossRef
15.
go back to reference Belleghem, M.V., et al.: Benchmark experiments for moisture transfer modelling in air and porous materials. Build. Environ. 46, 884–898 (2011)CrossRef Belleghem, M.V., et al.: Benchmark experiments for moisture transfer modelling in air and porous materials. Build. Environ. 46, 884–898 (2011)CrossRef
16.
go back to reference Trechsel, H.R.: Moisture analysis and condensation control in building envelopes. Am. Soc. Test. Mater. West Conshohocken Trechsel, H.R.: Moisture analysis and condensation control in building envelopes. Am. Soc. Test. Mater. West Conshohocken
17.
go back to reference Viitanen, H., et al.: Moisture and bio-deterioration risk of building materials and structures. J. Build. Phys. 33, 201–224 (2010)CrossRef Viitanen, H., et al.: Moisture and bio-deterioration risk of building materials and structures. J. Build. Phys. 33, 201–224 (2010)CrossRef
18.
go back to reference Nofal, M., Kumaran, K.: Biological damage function models for durability assessments of wood and wood-based products in building envelopes. Eur. J. Wood Wood Prod. 69, 619–631 (2011)CrossRef Nofal, M., Kumaran, K.: Biological damage function models for durability assessments of wood and wood-based products in building envelopes. Eur. J. Wood Wood Prod. 69, 619–631 (2011)CrossRef
19.
go back to reference Kunzel, H.M., et al.: Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope. Sol. Energy 78, 554–561 (2005)CrossRef Kunzel, H.M., et al.: Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope. Sol. Energy 78, 554–561 (2005)CrossRef
20.
go back to reference Kong, F.H., Zheng, M.Y.: Effects of combined heat and mass transfer on heating load in building drying period. Energy Build. 40, 1614–1622 (2008)CrossRef Kong, F.H., Zheng, M.Y.: Effects of combined heat and mass transfer on heating load in building drying period. Energy Build. 40, 1614–1622 (2008)CrossRef
21.
go back to reference Mendes, N., et al.: Moisture effects on conduction loads. Energy Build. 35, 631–644 (2003)CrossRef Mendes, N., et al.: Moisture effects on conduction loads. Energy Build. 35, 631–644 (2003)CrossRef
22.
go back to reference Mukhopadhyaya, P., et al.: Application of hygrothermal modeling tool to assess moisture response of exterior walls. J. Architectural Eng. 12, 178–186 (2006)CrossRef Mukhopadhyaya, P., et al.: Application of hygrothermal modeling tool to assess moisture response of exterior walls. J. Architectural Eng. 12, 178–186 (2006)CrossRef
23.
go back to reference Moon, H.J., Ryu, S.H., Kim, J.T.: The effect of moisture transportation on energy efficiency and IAQ in residential buildings. Energy Build. 75, 439–446 (2014)CrossRef Moon, H.J., Ryu, S.H., Kim, J.T.: The effect of moisture transportation on energy efficiency and IAQ in residential buildings. Energy Build. 75, 439–446 (2014)CrossRef
24.
go back to reference Hagentoft, C.E., Kalagasidis, A.S.: Mold growth control in cold attics through adaptive ventilation: Validation by field measurements. ASHRAE (2010) Hagentoft, C.E., Kalagasidis, A.S.: Mold growth control in cold attics through adaptive ventilation: Validation by field measurements. ASHRAE (2010)
25.
go back to reference Nielsen, K.F., et al.: Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. Int. Biodeterior. Biodegradation 54, 325–336 (2004) Nielsen, K.F., et al.: Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. Int. Biodeterior. Biodegradation 54, 325–336 (2004)
26.
go back to reference Hachem, C., et al.: Statistical analysis of microbial volatile organic compounds in an experimental project identification and transport analysis. Indoor Build. Environ. 19, 275–285 (2010)CrossRef Hachem, C., et al.: Statistical analysis of microbial volatile organic compounds in an experimental project identification and transport analysis. Indoor Build. Environ. 19, 275–285 (2010)CrossRef
27.
go back to reference China Meteorological Bureau et al.: China Standard Weather Data for Analyzing Building Thermal Conditions. China Architecture and Building Press, Beijing (2005) China Meteorological Bureau et al.: China Standard Weather Data for Analyzing Building Thermal Conditions. China Architecture and Building Press, Beijing (2005)
28.
go back to reference Ministry of Housing and Urban-Rural Development of the People’s Republic of China. In: Design Code for Heating Ventilation and Air Conditioning of Civil Buildings. China Architecture and Building Press, Beijing (2012) Ministry of Housing and Urban-Rural Development of the People’s Republic of China. In: Design Code for Heating Ventilation and Air Conditioning of Civil Buildings. China Architecture and Building Press, Beijing (2012)
Metadata
Title
Effect of Uncertainty in the Hygrothermal Properties on Hygrothermal Modeling
Authors
Xiangwei Liu
Ying Liu
Xingguo Guo
Na Luo
Guojie Chen
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-9528-4_47