Skip to main content
Top
Published in: Environmental Earth Sciences 5/2015

01-09-2015 | Thematic Issue

Effects of anions on bio-chemical degradation of nitrate in groundwater

Authors: Zhifei Ma, Yu Yang, Yonghai Jiang, Beidou Xi, Xinying Lian, Yanan Xu

Published in: Environmental Earth Sciences | Issue 5/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Combining denitrifying bacteria with sodium oleate-nanoscale zero-valent iron (SONZVI) has been proven to be effective for aqueous phase nitrate remediation. However, the effects of coexistent ions on nitrate reduction in a groundwater environment, which is at low temperature and under anoxic, light-excluded conditions, remain elusive. In this study, nitrate reduction by microbial-NZVI was evaluated via batch tests in the presence of common anions (SO4 2−, PO4 3− and Cl) in two different environments: groundwater environment and room environment. The results showed that nitrate was largely reduced within 10 days in an SONZVI + cell reactor in the groundwater environment, while only 79 % of the nitrate was reduced over 10 days in the room environment. In the groundwater environment, the removal efficiency could be accelerated by chloride or phosphate, but inhibited by sulfate. There were mainly two reaction stages, which were chemical reduction degradation and denitrifying degradation. Pseudo-first-order kinetics was used to describe the two reaction stages. In the first stage, the existence of the anions inhibited nitrate degradation. The synergistic effects of these anions on nitrate removal followed the order of Cl, SO4 2−, and PO4 3−. The results implied that using microbial-NZVI is a potential approach for in situ remediation of groundwater with nitrate contamination.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alowitz MJ, Scherer MM (2002) Kinetic of nitrate, nitrite and Cr(VI) reduction by iron metal. Environ Sci Technol 36:299–306CrossRef Alowitz MJ, Scherer MM (2002) Kinetic of nitrate, nitrite and Cr(VI) reduction by iron metal. Environ Sci Technol 36:299–306CrossRef
go back to reference Biswas S, Bose P (2005) Zero-valent iron-assisted autotrophic denitrification. J Environ Eng 131(8):1212–1220CrossRef Biswas S, Bose P (2005) Zero-valent iron-assisted autotrophic denitrification. J Environ Eng 131(8):1212–1220CrossRef
go back to reference Chen YD, Jiang YP, Zhu YN et al (2013) Fate and transport of ethanol-blended dissolved BTEX hydrocarbons: a quantitative tracing study of a sand tank experiment. Environ Earth Sci 70(1):49–56CrossRef Chen YD, Jiang YP, Zhu YN et al (2013) Fate and transport of ethanol-blended dissolved BTEX hydrocarbons: a quantitative tracing study of a sand tank experiment. Environ Earth Sci 70(1):49–56CrossRef
go back to reference Cheng SF, Wu SC (2000) The enhance methods for the degradation of TCE by zero-valent metals. Chemosphere 41(8):1263–1270CrossRef Cheng SF, Wu SC (2000) The enhance methods for the degradation of TCE by zero-valent metals. Chemosphere 41(8):1263–1270CrossRef
go back to reference Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41(8):1307–1311CrossRef Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41(8):1307–1311CrossRef
go back to reference Davis AP (2007) Field performance of bioretention: water quality. Environ Eng Sci 24(8):1048–1064CrossRef Davis AP (2007) Field performance of bioretention: water quality. Environ Eng Sci 24(8):1048–1064CrossRef
go back to reference Doyle MP, Beuchat LR, Montville TJ (1997) Food microbiology fundamentals and frontiers. ASM Press, Washington, p 786 Doyle MP, Beuchat LR, Montville TJ (1997) Food microbiology fundamentals and frontiers. ASM Press, Washington, p 786
go back to reference Fan X, Guan X, Ma J, Ai H (2009) Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control. J Environ Sci 21(8):1028–1035CrossRef Fan X, Guan X, Ma J, Ai H (2009) Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control. J Environ Sci 21(8):1028–1035CrossRef
go back to reference Foglra L, Briski F, Sipos L et al (2005) High nitrate from removal synthetic wasterwater with the mixed bacterial culture. Bioresour Technol 96(8):879–888CrossRef Foglra L, Briski F, Sipos L et al (2005) High nitrate from removal synthetic wasterwater with the mixed bacterial culture. Bioresour Technol 96(8):879–888CrossRef
go back to reference Harms H, Volkland HP, Repphun G et al (2003) Action of chelators on solid iron in phosphate-containing aqueous solution. Corros Sci 45(8):1717–1732CrossRef Harms H, Volkland HP, Repphun G et al (2003) Action of chelators on solid iron in phosphate-containing aqueous solution. Corros Sci 45(8):1717–1732CrossRef
go back to reference Hosseini SM, Ataie-Ashtiani B, Kholghi M (2011) Nitrate reduction by nano-Fe/Cu particles in packed column. Desalination 276:214–221CrossRef Hosseini SM, Ataie-Ashtiani B, Kholghi M (2011) Nitrate reduction by nano-Fe/Cu particles in packed column. Desalination 276:214–221CrossRef
go back to reference Huang YH, Zhang TC (2002) Kinetics of nitrate reduction by iron at near neutral pH. J Environ Eng Asce 128:604–611CrossRef Huang YH, Zhang TC (2002) Kinetics of nitrate reduction by iron at near neutral pH. J Environ Eng Asce 128:604–611CrossRef
go back to reference Huang YH, Zhang TC (2004) Effects of low pH on nitrate reduction by iron powder. Water Res 38(11):2631–2642CrossRef Huang YH, Zhang TC (2004) Effects of low pH on nitrate reduction by iron powder. Water Res 38(11):2631–2642CrossRef
go back to reference Huang CP, Wang HW, Chiu PC (1998) Nitrate reduction by metallic iron. Water Res 32(8):2257–2264CrossRef Huang CP, Wang HW, Chiu PC (1998) Nitrate reduction by metallic iron. Water Res 32(8):2257–2264CrossRef
go back to reference Hwang YH, Kim DG, Shin HS (2011) Mechanism study of nitrate reduction by nano zero valent iron. J Hazard Mater 185:1513–1521CrossRef Hwang YH, Kim DG, Shin HS (2011) Mechanism study of nitrate reduction by nano zero valent iron. J Hazard Mater 185:1513–1521CrossRef
go back to reference Joekar-Niasar V, Ataie-Ashtiani B (2009) Assessment of nitrate contamination in unsaturated zone of urban areas: the case study of Tehran, Iran. Environ Geol 57(8):1785–1798CrossRef Joekar-Niasar V, Ataie-Ashtiani B (2009) Assessment of nitrate contamination in unsaturated zone of urban areas: the case study of Tehran, Iran. Environ Geol 57(8):1785–1798CrossRef
go back to reference Kim HH, Seagren EA, Davis AP (2003) Engineered bioretention for removal of nitrate from stormwater runoff. Water Environ Res 75:355–367CrossRef Kim HH, Seagren EA, Davis AP (2003) Engineered bioretention for removal of nitrate from stormwater runoff. Water Environ Res 75:355–367CrossRef
go back to reference Lgourna Z, Warner N, Bouchaou L et al (2015) Elucidating the sources and mechanisms of groundwater salinization in the Ziz Basin of southeastern Morocco. Environ Earth Sci 73(1):77–93CrossRef Lgourna Z, Warner N, Bouchaou L et al (2015) Elucidating the sources and mechanisms of groundwater salinization in the Ziz Basin of southeastern Morocco. Environ Earth Sci 73(1):77–93CrossRef
go back to reference Ma ZF, Lian XY, Zhang JB (2013) Simulation on remediation of 2,4-DNT in groundwater by zero-valent iron. China Environ Sci 33(5):814–820 Ma ZF, Lian XY, Zhang JB (2013) Simulation on remediation of 2,4-DNT in groundwater by zero-valent iron. China Environ Sci 33(5):814–820
go back to reference Rina K, Datta PS, Singh CK et al (2014) Determining the genetic origin of nitrate contamination in aquifers of Northern Gujarat, India. Environ Earth Sci 71(4):1711–1719CrossRef Rina K, Datta PS, Singh CK et al (2014) Determining the genetic origin of nitrate contamination in aquifers of Northern Gujarat, India. Environ Earth Sci 71(4):1711–1719CrossRef
go back to reference Samuel CNT, Irene MCL (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632CrossRef Samuel CNT, Irene MCL (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632CrossRef
go back to reference Schnobrich MR, Chaplin BP, Semmens MJ et al (2007) Stimulating hydrogenotrophic denitrification in simulated groundwater containing high dissolved oxygen and nitrate concentrations. Water Res 41(9):1869–1876CrossRef Schnobrich MR, Chaplin BP, Semmens MJ et al (2007) Stimulating hydrogenotrophic denitrification in simulated groundwater containing high dissolved oxygen and nitrate concentrations. Water Res 41(9):1869–1876CrossRef
go back to reference Shin KH, Cha DK (2008) Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72(8):257–262CrossRef Shin KH, Cha DK (2008) Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72(8):257–262CrossRef
go back to reference Siantar DP, Schreier CG, Chou CS et al (1996) Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts. Water Res 30:2315–2322CrossRef Siantar DP, Schreier CG, Chou CS et al (1996) Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts. Water Res 30:2315–2322CrossRef
go back to reference Smith R, Ceazan M, Brooks M (1994) Autotrophic, hydrogenoxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination. Appl Environ Microbiol 60:1949–1955 Smith R, Ceazan M, Brooks M (1994) Autotrophic, hydrogenoxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination. Appl Environ Microbiol 60:1949–1955
go back to reference Son YH, Lee JK, Soong Y et al (2012) Heterostructured zero valent iron–montmorillonite nanohybrid and their catalytic efficacy. Appl Clay Sci 62–63:21–26CrossRef Son YH, Lee JK, Soong Y et al (2012) Heterostructured zero valent iron–montmorillonite nanohybrid and their catalytic efficacy. Appl Clay Sci 62–63:21–26CrossRef
go back to reference Su CM, Puls RW (2004) Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environ Sci Technol 38:2715–2720CrossRef Su CM, Puls RW (2004) Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environ Sci Technol 38:2715–2720CrossRef
go back to reference Tang SC, Lo IM (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47(8):2613–2632CrossRef Tang SC, Lo IM (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47(8):2613–2632CrossRef
go back to reference Tang CL, Zhang ZQ, Sun XN (2012) Effect of common ions on nitrate removal by zero-valent iron from alkaline soil. J Hazard Mater 231–232:114–119CrossRef Tang CL, Zhang ZQ, Sun XN (2012) Effect of common ions on nitrate removal by zero-valent iron from alkaline soil. J Hazard Mater 231–232:114–119CrossRef
go back to reference Wang W, Jin ZH, Li TL et al (2006) Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal. Chemosphere 65:1396–1404CrossRef Wang W, Jin ZH, Li TL et al (2006) Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal. Chemosphere 65:1396–1404CrossRef
go back to reference Yang GC, Lee HL (2005) Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Res 39(5):884–894CrossRef Yang GC, Lee HL (2005) Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Res 39(5):884–894CrossRef
Metadata
Title
Effects of anions on bio-chemical degradation of nitrate in groundwater
Authors
Zhifei Ma
Yu Yang
Yonghai Jiang
Beidou Xi
Xinying Lian
Yanan Xu
Publication date
01-09-2015
Publisher
Springer Berlin Heidelberg
Published in
Environmental Earth Sciences / Issue 5/2015
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-015-4454-z

Other articles of this Issue 5/2015

Environmental Earth Sciences 5/2015 Go to the issue