Skip to main content
Top
Published in: Journal of Engineering Thermophysics 2/2022

01-06-2022

Effects of Concentration and Temperature on the Viscosity and Thermal Conductivity of Graphene–Fe3O4/Water Hybrid Nanofluid and Development of New Correlation

Authors: A. Y. Al-Rabeeah, I. Seres, I. Farkas

Published in: Journal of Engineering Thermophysics | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents the influence of the volume concentration (VC) and temperature on the viscosity and thermal conductivity (TC) of a graphene–Fe3O4/water hybrid nanofluid. The experiments were done for volume concentrations (VCs) of 0.1% to 0.5% at temperatures of 20°C to 60°C. The results show that the thermal conductivity ratio (TCR) increases with the VC and temperature. Moreover, the TCR grew more with the VC percent at higher temperatures. The maximum increase in the TC was 34% at a VC of 0.5% at 60°C. The viscosity got up with the VC and decreased with temperature growth. The maximum increase in the relative viscosity (RV) was 6% at a VC of 0.5% at 60°C. Therefore, the VC affects the viscosity and TC, and a new correlation was suggested according to experimental results with good accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Al-Rabeeah, A.Y., Seres, I., and Farkas, I., Experimental Investigation and Performance Evaluation of Parabolic Trough Solar Collector for Hot Water Generation, J. Eng. Therm., 2021, vol. 30, pp. 420–432.CrossRef Al-Rabeeah, A.Y., Seres, I., and Farkas, I., Experimental Investigation and Performance Evaluation of Parabolic Trough Solar Collector for Hot Water Generation, J. Eng. Therm., 2021, vol. 30, pp. 420–432.CrossRef
2.
go back to reference Sedaghat, F., Yousefi, F., and Zolfaghari, H., Experimental Investigation and Modeling of S, N-GQDs Nanofluid Density Using New Equation of State and Artificial Neural Network, J. Eng. Therm., 2019, vol. 28, pp. 276–290.CrossRef Sedaghat, F., Yousefi, F., and Zolfaghari, H., Experimental Investigation and Modeling of S, N-GQDs Nanofluid Density Using New Equation of State and Artificial Neural Network, J. Eng. Therm., 2019, vol. 28, pp. 276–290.CrossRef
3.
go back to reference Hassanzadeh, R. and Tokgoz, N., Thermal-Hydraulic Characteristics of Nanofluid Flow in Corrugated Ducts, J. Eng. Therm., 2017, vol. 26, pp. 498–513.CrossRef Hassanzadeh, R. and Tokgoz, N., Thermal-Hydraulic Characteristics of Nanofluid Flow in Corrugated Ducts, J. Eng. Therm., 2017, vol. 26, pp. 498–513.CrossRef
4.
go back to reference Urmi, W., Rahman, M.M., and Hamzah, W.A.W., An Experimental Investigation on the Thermophysical Properties of 40% Ethylene Glycol Based TiO2-Al2O3 Hybrid Nanofluids, Int. Commun. Heat Mass Transfer, 2020, vol. 116, p. 104663.CrossRef Urmi, W., Rahman, M.M., and Hamzah, W.A.W., An Experimental Investigation on the Thermophysical Properties of 40% Ethylene Glycol Based TiO2-Al2O3 Hybrid Nanofluids, Int. Commun. Heat Mass Transfer, 2020, vol. 116, p. 104663.CrossRef
5.
go back to reference Zhang, X. and Zhang, Y., Heat Transfer and Flow Characteristics of Fe3O4–Water Nanofluids under Magnetic Excitation, Int. J. Therm. Sci., 2021, vol. 163, p. 106826.CrossRef Zhang, X. and Zhang, Y., Heat Transfer and Flow Characteristics of Fe3O4–Water Nanofluids under Magnetic Excitation, Int. J. Therm. Sci., 2021, vol. 163, p. 106826.CrossRef
6.
go back to reference Achard, F. and Maxwell, J.C., A Treatise on Electricity and Magnetism, in Landmark Writings in Western Mathematics 1640–1940, Elsevier, 2005, pp. 564–587. Achard, F. and Maxwell, J.C., A Treatise on Electricity and Magnetism, in Landmark Writings in Western Mathematics 1640–1940, Elsevier, 2005, pp. 564–587.
7.
go back to reference Sandhya, M., Ramasamy, D., Sudhakar, K., Kadirgama, K., Samykano, M., Harun, W.S.W., et al., A Systematic Review on Graphene-Based Nanofluids Application in Renewable Energy Systems: Preparation, Characterization, and Thermophysical Properties, Sustain. Energy Technol. Assess., 2021, vol. 44, p. 101058.CrossRef Sandhya, M., Ramasamy, D., Sudhakar, K., Kadirgama, K., Samykano, M., Harun, W.S.W., et al., A Systematic Review on Graphene-Based Nanofluids Application in Renewable Energy Systems: Preparation, Characterization, and Thermophysical Properties, Sustain. Energy Technol. Assess., 2021, vol. 44, p. 101058.CrossRef
8.
go back to reference Al-Rabeeah, A.Y., Seres, I., and Farkas, I., Recent Improvements of the Optical and Thermal Performance of the Parabolic Trough Solar Collector Systems, Facta Univesitatis, Ser.: Mech. Engin., 2021; https://doi.org/10.22190/FUME201106030ACrossRef Al-Rabeeah, A.Y., Seres, I., and Farkas, I., Recent Improvements of the Optical and Thermal Performance of the Parabolic Trough Solar Collector Systems, Facta Univesitatis, Ser.: Mech. Engin., 2021; https://​doi.​org/​10.​22190/​FUME201106030ACrossRef
9.
go back to reference Pavı́a, M., Alajami, K., Estellé, P., Desforges, A., and Vigolo, B., A Critical Review on Thermal Conductivity Enhancement of Graphene-Based Nanofluids, Adv. Colloid Interface Sci., 2021, p. 102452.CrossRef Pavı́a, M., Alajami, K., Estellé, P., Desforges, A., and Vigolo, B., A Critical Review on Thermal Conductivity Enhancement of Graphene-Based Nanofluids, Adv. Colloid Interface Sci., 2021, p. 102452.CrossRef
10.
go back to reference Ahmad, F., Abdal, S., Ayed, H., Hussain, S., Salim, S., and Almatroud, A.O., The Improved Thermal Efficiency of Maxwell Hybrid Nanofluid Comprising of Graphene Oxide Plus Silver/Kerosene Oil over Stretching Sheet, Case Stud. Therm. Eng., 2021, vol. 27, p. 101257.CrossRef Ahmad, F., Abdal, S., Ayed, H., Hussain, S., Salim, S., and Almatroud, A.O., The Improved Thermal Efficiency of Maxwell Hybrid Nanofluid Comprising of Graphene Oxide Plus Silver/Kerosene Oil over Stretching Sheet, Case Stud. Therm. Eng., 2021, vol. 27, p. 101257.CrossRef
11.
go back to reference Alnaqi, A.A., Alsarraf, J., and Al-Rashed, A.A.A.A., Hydrothermal Effects of Using Two Twisted Tape Inserts in a Parabolic Trough Solar Collector Filled with MgO-MWCNT/Thermal Oil Hybrid Nanofluid, Sustain. Energy Technol. Assess., 2021, vol. 47, p. 101331.CrossRef Alnaqi, A.A., Alsarraf, J., and Al-Rashed, A.A.A.A., Hydrothermal Effects of Using Two Twisted Tape Inserts in a Parabolic Trough Solar Collector Filled with MgO-MWCNT/Thermal Oil Hybrid Nanofluid, Sustain. Energy Technol. Assess., 2021, vol. 47, p. 101331.CrossRef
12.
go back to reference Esfe, M.H., Ahangar, M.R.H., Rejvani, M., Toghraie, D., and Hajmohammad, M.H., Designing an Artificial Neural Network to Predict Dynamic Viscosity of Aqueous Nanofluid of TiO2 Using Experimental Data, Int. Comm. Heat Mass Transfer, 2016, vol. 75, pp. 192–196.CrossRef Esfe, M.H., Ahangar, M.R.H., Rejvani, M., Toghraie, D., and Hajmohammad, M.H., Designing an Artificial Neural Network to Predict Dynamic Viscosity of Aqueous Nanofluid of TiO2 Using Experimental Data, Int. Comm. Heat Mass Transfer, 2016, vol. 75, pp. 192–196.CrossRef
13.
go back to reference Sundar, L.S., Mesfin, S., Ramana, E.V., Said, Z., and Sousa, A.C.M., Experimental Investigation of Thermo-Physical Properties, Heat Transfer, Pumping Power, Entropy Generation, and Exergy Efficiency of Nanodiamond + Fe3O4/60: 40% Water-Ethylene Glycol Hybrid Nanofluid Flow in a Tube, Therm. Sci. Eng. Prog., 2021, vol. 21, p. 100799.CrossRef Sundar, L.S., Mesfin, S., Ramana, E.V., Said, Z., and Sousa, A.C.M., Experimental Investigation of Thermo-Physical Properties, Heat Transfer, Pumping Power, Entropy Generation, and Exergy Efficiency of Nanodiamond + Fe3O4/60: 40% Water-Ethylene Glycol Hybrid Nanofluid Flow in a Tube, Therm. Sci. Eng. Prog., 2021, vol. 21, p. 100799.CrossRef
14.
go back to reference Mehrali, M., Sadeghinezhad, E., Akhiani, A.R., Latibari, S.T., Talebian, S., Dolatshahi-Pirouz, A., et al., An Ecofriendly Graphene-Based Nanofluid for Heat Transfer Applications, J. Clean. Prod., 2016, vol. 137, pp. 555–566.CrossRef Mehrali, M., Sadeghinezhad, E., Akhiani, A.R., Latibari, S.T., Talebian, S., Dolatshahi-Pirouz, A., et al., An Ecofriendly Graphene-Based Nanofluid for Heat Transfer Applications, J. Clean. Prod., 2016, vol. 137, pp. 555–566.CrossRef
15.
go back to reference Asadi, A., Alarifi, I.M., and Foong, L.K., An Experimental Study on Characterization, Stability and Dynamic Viscosity of CuO-TiO2/Water Hybrid Nanofluid, J. Mol. Liq., 2020, vol. 307, p. 112987.CrossRef Asadi, A., Alarifi, I.M., and Foong, L.K., An Experimental Study on Characterization, Stability and Dynamic Viscosity of CuO-TiO2/Water Hybrid Nanofluid, J. Mol. Liq., 2020, vol. 307, p. 112987.CrossRef
16.
go back to reference Okonkwo, E.C., Wole-Osho, I., Kavaz, D., Abid, M., and Al-Ansari, T., Thermodynamic Evaluation and Optimization of a Flat Plate Collector Operating with Alumina and Iron Mono and Hybrid Nanofluids, Sustain. Energy Technol. Assess., 2020, vol. 37, p. 100636.CrossRef Okonkwo, E.C., Wole-Osho, I., Kavaz, D., Abid, M., and Al-Ansari, T., Thermodynamic Evaluation and Optimization of a Flat Plate Collector Operating with Alumina and Iron Mono and Hybrid Nanofluids, Sustain. Energy Technol. Assess., 2020, vol. 37, p. 100636.CrossRef
17.
go back to reference Al-Oran, O., Lezsovits, F., and Aljawabrah, A., Exergy and Energy Amelioration for Parabolic Trough Collector Using Mono and Hybrid Nanofluids, J. Therm. An. Calorim., 2020, pp. 1–18. Al-Oran, O., Lezsovits, F., and Aljawabrah, A., Exergy and Energy Amelioration for Parabolic Trough Collector Using Mono and Hybrid Nanofluids, J. Therm. An. Calorim., 2020, pp. 1–18.
18.
go back to reference Estellé, P., Halelfadl, S., and Thierry, M., Thermal Conductivity of CNT Water Based Nanofluids: Experimental Trends and Models Overview, J. Therm. Eng., 2015, vol. 1, pp. 381–390.CrossRef Estellé, P., Halelfadl, S., and Thierry, M., Thermal Conductivity of CNT Water Based Nanofluids: Experimental Trends and Models Overview, J. Therm. Eng., 2015, vol. 1, pp. 381–390.CrossRef
19.
go back to reference Bushehri, M.K., Mohebbi, A., and Rafsanjani, H.H., Prediction of Thermal Conductivity and Viscosity of Nanofluids by Molecular Dynamics Simulation, J. Eng. Therm., 2016, vol. 25, pp. 389–400.CrossRef Bushehri, M.K., Mohebbi, A., and Rafsanjani, H.H., Prediction of Thermal Conductivity and Viscosity of Nanofluids by Molecular Dynamics Simulation, J. Eng. Therm., 2016, vol. 25, pp. 389–400.CrossRef
20.
go back to reference Li, X., Zou, C., Wang, T., and Lei, X., Rheological Behavior of Ethylene Glycol-Based Sic Nanofluids, Int. J. Heat Mass Transfer, 2015, vol. 84, pp. 925–930.CrossRef Li, X., Zou, C., Wang, T., and Lei, X., Rheological Behavior of Ethylene Glycol-Based Sic Nanofluids, Int. J. Heat Mass Transfer, 2015, vol. 84, pp. 925–930.CrossRef
21.
go back to reference Afrand, M., Toghraie, D., and Ruhani, B., Effects of Temperature and Nanoparticles Concentration on Rheological Behavior of Fe3O4–Ag/EG Hybrid Nanofluid: An Experimental Study, Exp. Therm. Fluid Sci., 2016, vol. 77, pp. 38–44.CrossRef Afrand, M., Toghraie, D., and Ruhani, B., Effects of Temperature and Nanoparticles Concentration on Rheological Behavior of Fe3O4–Ag/EG Hybrid Nanofluid: An Experimental Study, Exp. Therm. Fluid Sci., 2016, vol. 77, pp. 38–44.CrossRef
22.
go back to reference Xian, H.W., Sidik, N.A.C., Aid, S.R., Ken, T.L., and Asako, Y., Review on Preparation Techniques, Properties and Performance of Hybrid Nanofluid in Recent Engineering Applications, J. Adv. Res. Fluid Mech. Therm. Sci., 2018, vol. 45, pp. 1–13. Xian, H.W., Sidik, N.A.C., Aid, S.R., Ken, T.L., and Asako, Y., Review on Preparation Techniques, Properties and Performance of Hybrid Nanofluid in Recent Engineering Applications, J. Adv. Res. Fluid Mech. Therm. Sci., 2018, vol. 45, pp. 1–13.
23.
go back to reference Sundar, L.S., Singh, M.K., and Sousa, A.C.M., Enhanced Heat Transfer and Friction Factor of MWCNT–Fe3O4/Water Hybrid Nanofluids, Int. Comm. Heat Mass Transfer, 2014, vol. 52, pp. 73–83.CrossRef Sundar, L.S., Singh, M.K., and Sousa, A.C.M., Enhanced Heat Transfer and Friction Factor of MWCNT–Fe3O4/Water Hybrid Nanofluids, Int. Comm. Heat Mass Transfer, 2014, vol. 52, pp. 73–83.CrossRef
24.
go back to reference Baby, T.T. and Sundara, R., Synthesis and Transport Properties of Metal Oxide Decorated Graphene Dispersed Nanofluids, J. Phys. Chem. C, 2011, vol. 115, pp. 8527–8533.CrossRef Baby, T.T. and Sundara, R., Synthesis and Transport Properties of Metal Oxide Decorated Graphene Dispersed Nanofluids, J. Phys. Chem. C, 2011, vol. 115, pp. 8527–8533.CrossRef
25.
go back to reference Arzani, H.K., Amiri, A., Kazi, S.N., Chew, B.T., and Badarudin, A., Experimental and Numerical Investigation of Thermophysical Properties, Heat Transfer and Pressure Drop of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger, Int. Comm. Heat Mass Transfer, 2015, vol. 68, pp. 267–275.CrossRef Arzani, H.K., Amiri, A., Kazi, S.N., Chew, B.T., and Badarudin, A., Experimental and Numerical Investigation of Thermophysical Properties, Heat Transfer and Pressure Drop of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger, Int. Comm. Heat Mass Transfer, 2015, vol. 68, pp. 267–275.CrossRef
26.
go back to reference Mohan, V.B., Lau, K., Hui, D., and Bhattacharyya, D., Graphene-Based Materials and Their Composites: A Review on Production, Applications and Product Limitations, Compos. Part B Eng., 2018, vol. 142, pp. 200–220.CrossRef Mohan, V.B., Lau, K., Hui, D., and Bhattacharyya, D., Graphene-Based Materials and Their Composites: A Review on Production, Applications and Product Limitations, Compos. Part B Eng., 2018, vol. 142, pp. 200–220.CrossRef
27.
go back to reference Olabi, A.G., Abdelkareem, M.A., Wilberforce, T., and Sayed, E.T., Application of Graphene in Energy Storage Device—A Review, Renew. Sustain. Energy Rev., 2021, vol. 135, p. 110026.CrossRef Olabi, A.G., Abdelkareem, M.A., Wilberforce, T., and Sayed, E.T., Application of Graphene in Energy Storage Device—A Review, Renew. Sustain. Energy Rev., 2021, vol. 135, p. 110026.CrossRef
28.
go back to reference Huang, J., Yang, L., and Xie, Y., Why the Thermal Conductivity of Graphene Nanofluids is Extremely High?—A New Model Based on Anisotropy and Particle-Free Renovation, J. Mol. Liq., 2021, p. 117326.CrossRef Huang, J., Yang, L., and Xie, Y., Why the Thermal Conductivity of Graphene Nanofluids is Extremely High?—A New Model Based on Anisotropy and Particle-Free Renovation, J. Mol. Liq., 2021, p. 117326.CrossRef
29.
go back to reference Wole-Osho, I., Okonkwo, E.C., Kavaz, D., and Abbasoglu, S., An Experimental Investigation into the Effect of Particle Mixture Ratio on Specific Heat Capacity and Dynamic Viscosity of Al2O3–ZnO Hybrid Nanofluids, Powder Technol., 2020, vol. 363, pp. 699–716.CrossRef Wole-Osho, I., Okonkwo, E.C., Kavaz, D., and Abbasoglu, S., An Experimental Investigation into the Effect of Particle Mixture Ratio on Specific Heat Capacity and Dynamic Viscosity of Al2O3–ZnO Hybrid Nanofluids, Powder Technol., 2020, vol. 363, pp. 699–716.CrossRef
30.
go back to reference Babar, H., Sajid, M.U., and Ali, H.M., Viscosity of Hybrid Nanofluids: A Critical Review, Therm. Sci., 2019, vol. 23, pp. 1713–1754.CrossRef Babar, H., Sajid, M.U., and Ali, H.M., Viscosity of Hybrid Nanofluids: A Critical Review, Therm. Sci., 2019, vol. 23, pp. 1713–1754.CrossRef
31.
go back to reference Kazemi, I., Sefid, M., and Afrand, M., A Novel Comparative Experimental Study on Rheological Behavior of Mono and Hybrid Nanofluids Concerned Graphene and Silica Nano-Powders: Characterization, Stability and Viscosity Measurements, Powder Technol., 2020, vol. 366, pp. 216–229.CrossRef Kazemi, I., Sefid, M., and Afrand, M., A Novel Comparative Experimental Study on Rheological Behavior of Mono and Hybrid Nanofluids Concerned Graphene and Silica Nano-Powders: Characterization, Stability and Viscosity Measurements, Powder Technol., 2020, vol. 366, pp. 216–229.CrossRef
32.
go back to reference Mehrali, M., Sadeghinezhad, E., Rosen, M.A., Latibari, S.T., Mehrali, M., Metselaar, H.S.C., et al., Effect of Specific Surface Area on Convective Heat Transfer of Graphene Nanoplatelet Aqueous Nanofluids, Exp. Therm. Fluid Sci., 2015, vol. 68, pp. 100–108.CrossRef Mehrali, M., Sadeghinezhad, E., Rosen, M.A., Latibari, S.T., Mehrali, M., Metselaar, H.S.C., et al., Effect of Specific Surface Area on Convective Heat Transfer of Graphene Nanoplatelet Aqueous Nanofluids, Exp. Therm. Fluid Sci., 2015, vol. 68, pp. 100–108.CrossRef
33.
go back to reference Harandi, S.S., Karimipour, A., Afrand, M., Akbari, M., and D’Orazio, A., An Experimental Study On Thermal Conductivity of F-MWCNTs–Fe3O4/EG Hybrid Nanofluid: Effects of Temperature and Concentration, Int. Comm. Heat Mass Transfer, 2016, vol. 76, pp. 171–177.CrossRef Harandi, S.S., Karimipour, A., Afrand, M., Akbari, M., and D’Orazio, A., An Experimental Study On Thermal Conductivity of F-MWCNTs–Fe3O4/EG Hybrid Nanofluid: Effects of Temperature and Concentration, Int. Comm. Heat Mass Transfer, 2016, vol. 76, pp. 171–177.CrossRef
Metadata
Title
Effects of Concentration and Temperature on the Viscosity and Thermal Conductivity of Graphene–Fe3O4/Water Hybrid Nanofluid and Development of New Correlation
Authors
A. Y. Al-Rabeeah
I. Seres
I. Farkas
Publication date
01-06-2022
Publisher
Pleiades Publishing
Published in
Journal of Engineering Thermophysics / Issue 2/2022
Print ISSN: 1810-2328
Electronic ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232822020138

Other articles of this Issue 2/2022

Journal of Engineering Thermophysics 2/2022 Go to the issue

Premium Partners