Skip to main content
Top
Published in: Journal of Materials Science 8/2017

27-12-2016 | Original Paper

Effects of Cr2O3-modified LiNi1/3Co1/3Mn1/3O2 cathode materials on the electrochemical performance of lithium-ion batteries

Authors: Rui He, Lihui Zhang, Meifang Yan, Yuhua Gao, Zhenfa Liu

Published in: Journal of Materials Science | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cr2O3-modified LiNi1/3Co1/3Mn1/3O2 composites are prosperously synthesized through a high-temperature solid-state method. From scanning electron microscopy and transmission electron microscopy analyses, it can be observed that the structures of Cr2O3-modified LiNi1/3Co1/3Mn1/3O2 materials were converted to polycrystalline. An appropriate amount of Cr2O3 could reduce the electrochemical polarization of electrode and enhance the electrochemical reaction kinetics of Li+ insertion/deinsertion. Consequently, the discharge capacity of 2 wt% Cr2O3-modified LiNi1/3Co1/3Mn1/3O2 material is 186.7, 185.5, 174.1, and 171.7 mAh/g, at 0.1, 0.2, 0.5, and 1 C rates, in the voltage range of 2.6–4.6 V, respectively, which are higher than those of other samples. In particular, the rate capacity of 2 wt% Cr2O3-modified LiNi1/3Co1/3Mn1/3O2 material remains 90% even after 63 cycles. Cyclic voltammetry measurements indicate that the materials have favorable structural stability and cycle performance. The enhancement of rate capacity of LiNi1/3Co1/3Mn1/3O2 material was attributed to Cr2O3 modification, which increased the conductivity of the material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sa Q, Gratz E, He M, Lu W, Apelian D, Wang Y (2015) Synthesis of high performance LiNi1/3Co1/3Mn1/3O2 from lithium ion battery recovery stream. J Power Sources 282:140–145CrossRef Sa Q, Gratz E, He M, Lu W, Apelian D, Wang Y (2015) Synthesis of high performance LiNi1/3Co1/3Mn1/3O2 from lithium ion battery recovery stream. J Power Sources 282:140–145CrossRef
2.
go back to reference Hu SK, Cheng GH, Cheng MY (2009) Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Power Sources 188:564–569CrossRef Hu SK, Cheng GH, Cheng MY (2009) Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Power Sources 188:564–569CrossRef
3.
go back to reference Zhang BH, Liu Y, Chang Z, Yang YQ, Wen ZB, Wu YP (2014) Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors. J Power Sources 253:98–103CrossRef Zhang BH, Liu Y, Chang Z, Yang YQ, Wen ZB, Wu YP (2014) Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors. J Power Sources 253:98–103CrossRef
4.
go back to reference Hu W, Zhang XB, Cheng YL, Wu YM, Wang LM (2011) Low-cost and facile one-pot synthesis of pure single-crystalline ε-Cu0.95V2O5 nanoribbons: high capacity cathode material for rechargeable Li-ion batteries. Chem Commun 47:5250–5252CrossRef Hu W, Zhang XB, Cheng YL, Wu YM, Wang LM (2011) Low-cost and facile one-pot synthesis of pure single-crystalline ε-Cu0.95V2O5 nanoribbons: high capacity cathode material for rechargeable Li-ion batteries. Chem Commun 47:5250–5252CrossRef
5.
go back to reference Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef
6.
go back to reference Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries†. Chem Mater 22:587–603CrossRef Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries†. Chem Mater 22:587–603CrossRef
7.
go back to reference Hu W, Zhang XB, Cheng YL, Wu CY, Cao F, Wang LM (2011) Mild and cost-effective one-pot synthesis of pure single-crystalline β-Ag0.33V2O5 nanowires for rechargeable Li-ion batteries. Chem Sus Chem 4:1091–1094CrossRef Hu W, Zhang XB, Cheng YL, Wu CY, Cao F, Wang LM (2011) Mild and cost-effective one-pot synthesis of pure single-crystalline β-Ag0.33V2O5 nanowires for rechargeable Li-ion batteries. Chem Sus Chem 4:1091–1094CrossRef
8.
go back to reference Wang ZL, Xu D, Wang LM, Zhang XB (2012) Facile and low-cost synthesis of large-area pure V2O5 nanosheets for high-capacity and high-rate lithium storage over a wide temperature range. ChemPlusChem 77:124–128CrossRef Wang ZL, Xu D, Wang LM, Zhang XB (2012) Facile and low-cost synthesis of large-area pure V2O5 nanosheets for high-capacity and high-rate lithium storage over a wide temperature range. ChemPlusChem 77:124–128CrossRef
9.
go back to reference Yao YL, Liu HC, Li GC, Peng HR, Chen KZ (2013) Synthesis and electrochemical performance of phosphate-coated porous LiNi1/3Co1/3Mn1/3O2 coated material for lithium ion batteries. Electrochim Acta 113:340–345CrossRef Yao YL, Liu HC, Li GC, Peng HR, Chen KZ (2013) Synthesis and electrochemical performance of phosphate-coated porous LiNi1/3Co1/3Mn1/3O2 coated material for lithium ion batteries. Electrochim Acta 113:340–345CrossRef
10.
go back to reference Jiang KC, Xin S, Lee J-S et al (2012) Improved kinetics of LiNi1/3Co1/3Mn1/3O2 cathode material through reduced grapheme oxide networks. Phys Chem 14:2934–2939 Jiang KC, Xin S, Lee J-S et al (2012) Improved kinetics of LiNi1/3Co1/3Mn1/3O2 cathode material through reduced grapheme oxide networks. Phys Chem 14:2934–2939
11.
go back to reference Araki K, Taguchi N, Sakaebe H (2014) Electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material modified by coating with Al2O3 nanoparticles. J Power Sources 269:236–243CrossRef Araki K, Taguchi N, Sakaebe H (2014) Electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material modified by coating with Al2O3 nanoparticles. J Power Sources 269:236–243CrossRef
12.
go back to reference Guo X, Cong LN, ZhaO Q, Tai LH, Wu XL, Zhang JP, Wang RS, Xie HM, Sun LQ (2015) Enhancement of electrochemical performance of LiNi1/3Co1/3Mn1/3O2 by surface modification with MnO2. J Alloys Compd 651:12–18CrossRef Guo X, Cong LN, ZhaO Q, Tai LH, Wu XL, Zhang JP, Wang RS, Xie HM, Sun LQ (2015) Enhancement of electrochemical performance of LiNi1/3Co1/3Mn1/3O2 by surface modification with MnO2. J Alloys Compd 651:12–18CrossRef
13.
go back to reference Wu JF, Liu HG, Ye XH, Xia JP, Lu Y, Lin CW, Yu XW (2015) Effect of Nb modified on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 at high cutoff voltage for lithium-ion battery. J Alloy Compd 644:223–227CrossRef Wu JF, Liu HG, Ye XH, Xia JP, Lu Y, Lin CW, Yu XW (2015) Effect of Nb modified on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 at high cutoff voltage for lithium-ion battery. J Alloy Compd 644:223–227CrossRef
14.
go back to reference Zhong SK, Wang Y, Liu JQ (2011) Synthesis and electrochemical properties of Ce-doped LiNi1/3Co1/3Mn1/3O2 cathode material for Li-ion batteries. J Rare Earths 29:891–895CrossRef Zhong SK, Wang Y, Liu JQ (2011) Synthesis and electrochemical properties of Ce-doped LiNi1/3Co1/3Mn1/3O2 cathode material for Li-ion batteries. J Rare Earths 29:891–895CrossRef
15.
go back to reference Cui Y, Xu SM (2015) High tap density of Ni3(PO4)2 coated LiNi1/3Co1/3Mn1/3O2 with enhanced cycling performance at high cut-off voltage. Chin J Chem Eng 23:315–320CrossRef Cui Y, Xu SM (2015) High tap density of Ni3(PO4)2 coated LiNi1/3Co1/3Mn1/3O2 with enhanced cycling performance at high cut-off voltage. Chin J Chem Eng 23:315–320CrossRef
16.
go back to reference Qiu Q, Huang X, Chen YM, Tan Y, Lv WZ (2014) Al2O3 coated LiNi1/3Co1/3Mn1/3O2 cathode material by sol–gel method: preparation and characterization. Ceram Int 40:10511–10516CrossRef Qiu Q, Huang X, Chen YM, Tan Y, Lv WZ (2014) Al2O3 coated LiNi1/3Co1/3Mn1/3O2 cathode material by sol–gel method: preparation and characterization. Ceram Int 40:10511–10516CrossRef
17.
go back to reference Liu XZ, Li HQ, Li D, Ishida M, Zhou HS (2013) PEDOT modified LiNi1/3Co1/3Mn1/3O2 with enhanced electrochemical performance for lithium ion batteries. J Power Sources 243:374–380CrossRef Liu XZ, Li HQ, Li D, Ishida M, Zhou HS (2013) PEDOT modified LiNi1/3Co1/3Mn1/3O2 with enhanced electrochemical performance for lithium ion batteries. J Power Sources 243:374–380CrossRef
18.
go back to reference Li XW, Lin YB, Lin Y (2012) Surface modification of LiNi1/3Co1/3Mn1/3O2 with Cr2O3 for lithium ion batteries. Rare Mater 31:140CrossRef Li XW, Lin YB, Lin Y (2012) Surface modification of LiNi1/3Co1/3Mn1/3O2 with Cr2O3 for lithium ion batteries. Rare Mater 31:140CrossRef
19.
go back to reference Cheng CX, Yi HY, Chen F (2014) Effect of Cr2O3 coating on LiNi1/3Co1/3Mn1/3O2 as cathode for lithium-ion batteries. J Electron Mater 43:3681CrossRef Cheng CX, Yi HY, Chen F (2014) Effect of Cr2O3 coating on LiNi1/3Co1/3Mn1/3O2 as cathode for lithium-ion batteries. J Electron Mater 43:3681CrossRef
20.
go back to reference Li W, Wang H, Chen MZ, Gao JJ, Li X, Ge WJ, Qu MZ, Wei AJ, Zhang LH, Liu ZF (2016) The reaction mechanism of the Mg2+ and F− co-modification and its influence on the electrochemical performance of the Li4Ti5O12 anode material. Electrochim Acta 188:499–511CrossRef Li W, Wang H, Chen MZ, Gao JJ, Li X, Ge WJ, Qu MZ, Wei AJ, Zhang LH, Liu ZF (2016) The reaction mechanism of the Mg2+ and F co-modification and its influence on the electrochemical performance of the Li4Ti5O12 anode material. Electrochim Acta 188:499–511CrossRef
21.
go back to reference Shin HS, Park SH, Bae YC, Sun YK (2005) Synthesis of Li[Ni0.475Co0.05Mn0.475]O2 cathode materials via a carbonate process. Solid State Ion 176:2577–2581CrossRef Shin HS, Park SH, Bae YC, Sun YK (2005) Synthesis of Li[Ni0.475Co0.05Mn0.475]O2 cathode materials via a carbonate process. Solid State Ion 176:2577–2581CrossRef
22.
go back to reference Luo ZM, Sun YG, Liu HY (2015) Electrochemical performance of a nano SnO2-modified LiNi1/3Co1/3Mn1/3O2 cathode material. Chin Chem Lett 26:1403–1408CrossRef Luo ZM, Sun YG, Liu HY (2015) Electrochemical performance of a nano SnO2-modified LiNi1/3Co1/3Mn1/3O2 cathode material. Chin Chem Lett 26:1403–1408CrossRef
23.
go back to reference Zhao RR, Yang ZL, Chen JC, Chen ZJ, Liang JX, Chen HY (2015) Novel solvo/hydrothermal assisted co-precipitation method for faceted LiNi1/3Co1/3Mn1/3O2 cathode material. J Alloys Compd 627:206–210CrossRef Zhao RR, Yang ZL, Chen JC, Chen ZJ, Liang JX, Chen HY (2015) Novel solvo/hydrothermal assisted co-precipitation method for faceted LiNi1/3Co1/3Mn1/3O2 cathode material. J Alloys Compd 627:206–210CrossRef
24.
go back to reference Rougier A, Gravereau P, Delmas C (1996) Optimization of the composition of the Li1−zNi1+zO2 electrode materials: structural, magnetic, and electrochemical studies. J Electrochem Soc 143:1168–1175CrossRef Rougier A, Gravereau P, Delmas C (1996) Optimization of the composition of the Li1−zNi1+zO2 electrode materials: structural, magnetic, and electrochemical studies. J Electrochem Soc 143:1168–1175CrossRef
25.
go back to reference Şahan H, Göktepe H, Patat Ş, Ulgen A (2010) Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications. J Solid State Ion 181:1437–1444CrossRef Şahan H, Göktepe H, Patat Ş, Ulgen A (2010) Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications. J Solid State Ion 181:1437–1444CrossRef
26.
go back to reference Li X, Xie ZW, Liu WJ, Ge WJ, Wang H, Qu MZ (2015) Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochim Acta 174:1122–1130CrossRef Li X, Xie ZW, Liu WJ, Ge WJ, Wang H, Qu MZ (2015) Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochim Acta 174:1122–1130CrossRef
27.
go back to reference Dou JQ, Kang X, Wumaier T (2012) Effect of lithium boron oxide glass coating on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2. J Solid State Electrochem 16:1481–1486CrossRef Dou JQ, Kang X, Wumaier T (2012) Effect of lithium boron oxide glass coating on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2. J Solid State Electrochem 16:1481–1486CrossRef
28.
go back to reference Nayak PK, Grinblat J, Levi M, Wu Y, Powell B, Aurbach D (2014) TEM and raman spectroscopy evidence of layered to spinel phase transformation in layered LiNi1/3Co1/3Mn1/3O2 upon cycling to higher voltages. J Electroanal Chem 733:6–19CrossRef Nayak PK, Grinblat J, Levi M, Wu Y, Powell B, Aurbach D (2014) TEM and raman spectroscopy evidence of layered to spinel phase transformation in layered LiNi1/3Co1/3Mn1/3O2 upon cycling to higher voltages. J Electroanal Chem 733:6–19CrossRef
29.
go back to reference Mankiandan P, Periasamy P, Jagannathan R (2014) Grain boundary driven capacity fade/hysteresis abated in composite cathode material for lithium-ion batteries/pouch cell. J Power Sources 264:299–310CrossRef Mankiandan P, Periasamy P, Jagannathan R (2014) Grain boundary driven capacity fade/hysteresis abated in composite cathode material for lithium-ion batteries/pouch cell. J Power Sources 264:299–310CrossRef
30.
go back to reference Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B (2012) The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel–manganese oxide electrodes for Li-ion batteries. Adv Mater 24:1192–1196CrossRef Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B (2012) The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel–manganese oxide electrodes for Li-ion batteries. Adv Mater 24:1192–1196CrossRef
31.
go back to reference Ito A, Li D, Sata Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y (2010) Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources 195:567CrossRef Ito A, Li D, Sata Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y (2010) Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources 195:567CrossRef
32.
go back to reference Wu F, Wang M, Su YF, Bao YL, Chen S (2010) A novel method for synthesis of layered LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion battery. J Power Sources 195:2362–2367CrossRef Wu F, Wang M, Su YF, Bao YL, Chen S (2010) A novel method for synthesis of layered LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion battery. J Power Sources 195:2362–2367CrossRef
33.
go back to reference Wang D, Li XH, Wang ZX, Guo HJ, Xu Y, Fan YL (2016) Co-modification of LiNi0.5Co0.2Mn0.3O2 cathode materials with zirconium substitution and surface polypyrrole coating: towards superior high voltage electrochemical performances for lithium ion batteries. J Electrochim Acta 196:101–109CrossRef Wang D, Li XH, Wang ZX, Guo HJ, Xu Y, Fan YL (2016) Co-modification of LiNi0.5Co0.2Mn0.3O2 cathode materials with zirconium substitution and surface polypyrrole coating: towards superior high voltage electrochemical performances for lithium ion batteries. J Electrochim Acta 196:101–109CrossRef
34.
go back to reference Shi SJ, Tu JP, Tang YY, Zhang YQ, Liu XY, Wang XL, Gu CD (2013) Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources 225:338–346CrossRef Shi SJ, Tu JP, Tang YY, Zhang YQ, Liu XY, Wang XL, Gu CD (2013) Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources 225:338–346CrossRef
35.
go back to reference Li X, Xie ZW, Liu WJ, Ge WJ, Wang H, Qu MZ (2015) Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. J Electrochim Acta 174:1122–1130CrossRef Li X, Xie ZW, Liu WJ, Ge WJ, Wang H, Qu MZ (2015) Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. J Electrochim Acta 174:1122–1130CrossRef
36.
go back to reference Ding YH, Zhang P, Gao DS (2008) Synthesis and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]0.96Ti0.04O1.96F0.04 as cathode material for lithium-ion batteries. J Alloys Compd 456:344–347CrossRef Ding YH, Zhang P, Gao DS (2008) Synthesis and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]0.96Ti0.04O1.96F0.04 as cathode material for lithium-ion batteries. J Alloys Compd 456:344–347CrossRef
Metadata
Title
Effects of Cr2O3-modified LiNi1/3Co1/3Mn1/3O2 cathode materials on the electrochemical performance of lithium-ion batteries
Authors
Rui He
Lihui Zhang
Meifang Yan
Yuhua Gao
Zhenfa Liu
Publication date
27-12-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 8/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0704-z

Other articles of this Issue 8/2017

Journal of Materials Science 8/2017 Go to the issue

Premium Partners