Skip to main content
Top
Published in: Flow, Turbulence and Combustion 2/2018

08-06-2018

Effects of Discrete Energy and Helicity Conservation in Numerical Simulations of Helical Turbulence

Authors: Francesco Capuano, Donato Vallefuoco

Published in: Flow, Turbulence and Combustion | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Helicity is the scalar product between velocity and vorticity and, just like energy, its integral is an inviscid invariant of the three-dimensional incompressible Navier-Stokes equations. However, space- and time-discretization methods typically corrupt this property, leading to violation of the inviscid conservation principles. This work investigates the discrete helicity conservation properties of spectral and finite-differencing methods, in relation to the form employed for the convective term. Effects due to Runge-Kutta time-advancement schemes are also taken into consideration in the analysis. The theoretical results are proved against inviscid numerical simulations, while a scale-dependent analysis of energy, helicity and their non-linear transfers is performed to further characterize the discretization errors of the different forms in forced helical turbulence simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Olver, P.J.: A nonlinear Hamiltonian structure for the Euler equations. J. Math. Anal. Appl. 89(1), 233–250 (1982)MathSciNetCrossRef Olver, P.J.: A nonlinear Hamiltonian structure for the Euler equations. J. Math. Anal. Appl. 89(1), 233–250 (1982)MathSciNetCrossRef
2.
go back to reference Arnold, V.I.: Hamiltonian nature of the euler equations in the dynamics of a rigid body and of an ideal fluid. In: Vladimir, I (ed.) Arnold-Collected Works, pp. 175–178. Springer (1969) Arnold, V.I.: Hamiltonian nature of the euler equations in the dynamics of a rigid body and of an ideal fluid. In: Vladimir, I (ed.) Arnold-Collected Works, pp. 175–178. Springer (1969)
3.
go back to reference Olver, P.J.: On the Hamiltonian structure of evolution equations. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 88, pp. 71–88. Cambridge University Press (1980) Olver, P.J.: On the Hamiltonian structure of evolution equations. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 88, pp. 71–88. Cambridge University Press (1980)
4.
go back to reference Holm, D.D.: Geometric Mechanics: Part I: Dynamics and Symmetry. World Scientific Publishing Company, Singapore (2011)CrossRef Holm, D.D.: Geometric Mechanics: Part I: Dynamics and Symmetry. World Scientific Publishing Company, Singapore (2011)CrossRef
5.
go back to reference Moreau, J.J.: Constantes dun ilot tourbillonnaire en fluide parfait barotrope. C. R. Acad. Sci. 252(19), 2810 (1961)MATH Moreau, J.J.: Constantes dun ilot tourbillonnaire en fluide parfait barotrope. C. R. Acad. Sci. 252(19), 2810 (1961)MATH
6.
7.
go back to reference André, J., Lesieur, M.: Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J. Fluid Mech. 81(1), 187–207 (1977)CrossRef André, J., Lesieur, M.: Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J. Fluid Mech. 81(1), 187–207 (1977)CrossRef
8.
go back to reference Kraichnan, R.H., Panda, R.: Depression of nonlinearity in decaying isotropic turbulence. Phys. Fluids 31(9), 2395–2397 (1988)CrossRef Kraichnan, R.H., Panda, R.: Depression of nonlinearity in decaying isotropic turbulence. Phys. Fluids 31(9), 2395–2397 (1988)CrossRef
9.
go back to reference Teitelbaum, T., Mininni, P.D.: Effect of helicity and rotation on the free decay of turbulent flows. Phys. Rev. Lett. 103(1), 014,501 (2009)CrossRef Teitelbaum, T., Mininni, P.D.: Effect of helicity and rotation on the free decay of turbulent flows. Phys. Rev. Lett. 103(1), 014,501 (2009)CrossRef
10.
go back to reference Biferale, L., Musacchio, S., Toschi, F.: Split energy–helicity cascades in three-dimensional homogeneous and isotropic turbulence. J. Fluid Mech. 730, 309–327 (2013)MathSciNetCrossRef Biferale, L., Musacchio, S., Toschi, F.: Split energy–helicity cascades in three-dimensional homogeneous and isotropic turbulence. J. Fluid Mech. 730, 309–327 (2013)MathSciNetCrossRef
11.
go back to reference Chen, Q., Chen, S., Eyink, G.L.: The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15(2), 361–374 (2003)MathSciNetCrossRef Chen, Q., Chen, S., Eyink, G.L.: The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15(2), 361–374 (2003)MathSciNetCrossRef
12.
go back to reference Kessar, M., Plunian, F., Stepanov, R., Balarac, G.: Non-Kolmogorov cascade of helicity-driven turbulence. Phys. Rev. E 92(3), 031,004 (2015)CrossRef Kessar, M., Plunian, F., Stepanov, R., Balarac, G.: Non-Kolmogorov cascade of helicity-driven turbulence. Phys. Rev. E 92(3), 031,004 (2015)CrossRef
13.
go back to reference Lautenschlager, M., Eppel, D., Thacker, W.: Subgrid parametrization in helical flows. Beitr. Phys. Atmos 61, 87–97 (1988)MATH Lautenschlager, M., Eppel, D., Thacker, W.: Subgrid parametrization in helical flows. Beitr. Phys. Atmos 61, 87–97 (1988)MATH
14.
go back to reference Morbiducci, U., Ponzini, R., Grigioni, M., Redaelli, A.: Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study. J. Biomech. 40(3), 519–534 (2007)CrossRef Morbiducci, U., Ponzini, R., Grigioni, M., Redaelli, A.: Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study. J. Biomech. 40(3), 519–534 (2007)CrossRef
15.
go back to reference Capuano, F., Coppola, G., Balarac, G., de Luca, L.: Energy preserving turbulent simulations at a reduced computational cost. J. Comput. Phys. 298, 480–494 (2015)MathSciNetCrossRef Capuano, F., Coppola, G., Balarac, G., de Luca, L.: Energy preserving turbulent simulations at a reduced computational cost. J. Comput. Phys. 298, 480–494 (2015)MathSciNetCrossRef
16.
go back to reference Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flows. J. Comput. Phys. 143, 90–124 (1998)MathSciNetCrossRef Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flows. J. Comput. Phys. 143, 90–124 (1998)MathSciNetCrossRef
17.
go back to reference Verstappen, R.W.C.P., Veldman, A.E.P.: Symmetry–preserving discretization of turbulent flow. J. Comput. Phys. 187, 343–368 (2003)MathSciNetCrossRef Verstappen, R.W.C.P., Veldman, A.E.P.: Symmetry–preserving discretization of turbulent flow. J. Comput. Phys. 187, 343–368 (2003)MathSciNetCrossRef
18.
go back to reference Bernsen, E., Bokhove, O., van der Vegt, J.J.: A (dis)continuous finite element model for generalized 2d vorticity dynamics. J. Comput. Phys. 211(2), 719–747 (2006)MathSciNetCrossRef Bernsen, E., Bokhove, O., van der Vegt, J.J.: A (dis)continuous finite element model for generalized 2d vorticity dynamics. J. Comput. Phys. 211(2), 719–747 (2006)MathSciNetCrossRef
19.
go back to reference Lee, D., Palha, A., Gerritsma, M.: Discrete conservation properties for shallow water flows using mixed mimetic spectral elements. J. Comput. Phys. 357, 282–304 (2017)MathSciNetCrossRef Lee, D., Palha, A., Gerritsma, M.: Discrete conservation properties for shallow water flows using mixed mimetic spectral elements. J. Comput. Phys. 357, 282–304 (2017)MathSciNetCrossRef
20.
go back to reference Liu, J.G., Shu, C.W.: A high-order discontinuous Galerkin method for 2d incompressible flows. J. Comput. Phys. 160(2), 577–596 (2000)MathSciNetCrossRef Liu, J.G., Shu, C.W.: A high-order discontinuous Galerkin method for 2d incompressible flows. J. Comput. Phys. 160(2), 577–596 (2000)MathSciNetCrossRef
21.
go back to reference Palha, A., Gerritsma, M.: A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2d incompressible Navier–Stokes equations. J. Comput. Phys. 328, 200–220 (2017)MathSciNetCrossRef Palha, A., Gerritsma, M.: A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2d incompressible Navier–Stokes equations. J. Comput. Phys. 328, 200–220 (2017)MathSciNetCrossRef
22.
go back to reference Liu, J.G., Wang, W.C.: Energy and helicity preserving schemes for hydro- and magnetohydro-dynamics flows with symmetry. J. Comput. Phys. 200(1), 8–33 (2004)MathSciNetCrossRef Liu, J.G., Wang, W.C.: Energy and helicity preserving schemes for hydro- and magnetohydro-dynamics flows with symmetry. J. Comput. Phys. 200(1), 8–33 (2004)MathSciNetCrossRef
23.
go back to reference Olshanskii, M., Rebholz, L.G.: Note on helicity balance of the Galerkin method for the 3d Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 199(17-20), 1032–1035 (2010)MathSciNetCrossRef Olshanskii, M., Rebholz, L.G.: Note on helicity balance of the Galerkin method for the 3d Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 199(17-20), 1032–1035 (2010)MathSciNetCrossRef
24.
go back to reference Olshanskii, M.A., Rebholz, L.G.: Velocity–vorticity–helicity formulation and a solver for the Navier–Stokes equations. J. Comput. Phys. 229(11), 4291–4303 (2010)MathSciNetCrossRef Olshanskii, M.A., Rebholz, L.G.: Velocity–vorticity–helicity formulation and a solver for the Navier–Stokes equations. J. Comput. Phys. 229(11), 4291–4303 (2010)MathSciNetCrossRef
25.
go back to reference Rebholz, L.G.: An energy- and helicity-conserving finite element scheme for the Navier-Stokes equations. SIAM J. Numer. Anal. 45(4), 1622–1638 (2007)MathSciNetCrossRef Rebholz, L.G.: An energy- and helicity-conserving finite element scheme for the Navier-Stokes equations. SIAM J. Numer. Anal. 45(4), 1622–1638 (2007)MathSciNetCrossRef
26.
go back to reference Capuano, F., Coppola, G., de Luca, L.: An efficient time advancing strategy for energy-preserving simulations. J. Comput. Phys. 295, 209–229 (2015)MathSciNetCrossRef Capuano, F., Coppola, G., de Luca, L.: An efficient time advancing strategy for energy-preserving simulations. J. Comput. Phys. 295, 209–229 (2015)MathSciNetCrossRef
27.
go back to reference Trefethen, L.N.: Spectral Methods in MATLAB, vol. 10 SIAM (2000) Trefethen, L.N.: Spectral Methods in MATLAB, vol. 10 SIAM (2000)
28.
go back to reference Kravhcenko, A.G., Moin, P.: On the effect of numerical errors in large eddy simulations of turbulent flows. J. Comput. Phys. 131, 310–322 (1997)CrossRef Kravhcenko, A.G., Moin, P.: On the effect of numerical errors in large eddy simulations of turbulent flows. J. Comput. Phys. 131, 310–322 (1997)CrossRef
29.
go back to reference Zang, T.A.: On the rotation and skew-symmetric forms for incompressible flow simulations. Appl. Numer. Math. 7, 27–40 (1991)CrossRef Zang, T.A.: On the rotation and skew-symmetric forms for incompressible flow simulations. Appl. Numer. Math. 7, 27–40 (1991)CrossRef
30.
go back to reference Blaisdell, G.A., Spyropoulos, E.T., Qin, J.H.: The effect of the formulation of nonlinear terms on aliasing errors in spectral methods. Appl. Numer. Math. 21(3), 207–219 (1996)MathSciNetCrossRef Blaisdell, G.A., Spyropoulos, E.T., Qin, J.H.: The effect of the formulation of nonlinear terms on aliasing errors in spectral methods. Appl. Numer. Math. 21(3), 207–219 (1996)MathSciNetCrossRef
31.
go back to reference Horiuti, K.: Comparison of conservative and rotational forms in large eddy simulation of turbulent channel flow. J. Comput. Phys 71, 343–370 (1987)CrossRef Horiuti, K.: Comparison of conservative and rotational forms in large eddy simulation of turbulent channel flow. J. Comput. Phys 71, 343–370 (1987)CrossRef
32.
go back to reference Robidoux, N., Steinberg, S.: A discrete vector calculus in tensor grids. Comput. Methods Appl. Math. 11(1), 23–66 (2011)MathSciNetCrossRef Robidoux, N., Steinberg, S.: A discrete vector calculus in tensor grids. Comput. Methods Appl. Math. 11(1), 23–66 (2011)MathSciNetCrossRef
33.
go back to reference Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press, Boca Raton (1980)CrossRef Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press, Boca Raton (1980)CrossRef
34.
go back to reference Rhie, C., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11), 1525–1532 (1983)CrossRef Rhie, C., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11), 1525–1532 (1983)CrossRef
35.
go back to reference Shashank, L.J., Iaccarino, G.: A co-located incompressible Navier–Stokes solver with exact mass, momentum and kinetic energy conservation in the inviscid limit. J. Comput. Phys. 229(12), 4425–4430 (2010)CrossRef Shashank, L.J., Iaccarino, G.: A co-located incompressible Navier–Stokes solver with exact mass, momentum and kinetic energy conservation in the inviscid limit. J. Comput. Phys. 229(12), 4425–4430 (2010)CrossRef
36.
go back to reference Trias, F.X., Lehmkuhl, O., Oliva, A., Pérez-Segarra, C., Verstappen, R.: Symmetry-preserving discretization of Navier–Stokes equations on collocated unstructured grids. J. Comput. Phys. 258, 246–267 (2014)MathSciNetCrossRef Trias, F.X., Lehmkuhl, O., Oliva, A., Pérez-Segarra, C., Verstappen, R.: Symmetry-preserving discretization of Navier–Stokes equations on collocated unstructured grids. J. Comput. Phys. 258, 246–267 (2014)MathSciNetCrossRef
37.
go back to reference Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)MathSciNetCrossRef Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)MathSciNetCrossRef
38.
go back to reference Coppola, G., Capuano, F., de Luca, L.: Energy-preserving discretizations of the Navier-Stokes equations. Classical and modern approaches. In: Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics, vol. 5, pp. 2257–2269 (2017) Coppola, G., Capuano, F., de Luca, L.: Energy-preserving discretizations of the Navier-Stokes equations. Classical and modern approaches. In: Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics, vol. 5, pp. 2257–2269 (2017)
39.
go back to reference Ham, F., Lien, F., Strong, A.: A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids. J. Comput. Phys. 177(1), 117–133 (2002)CrossRef Ham, F., Lien, F., Strong, A.: A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids. J. Comput. Phys. 177(1), 117–133 (2002)CrossRef
40.
go back to reference Sanderse, B., Koren, B.: Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations. J. Comput. Phys. 231, 3041–3063 (2012)MathSciNetCrossRef Sanderse, B., Koren, B.: Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations. J. Comput. Phys. 231, 3041–3063 (2012)MathSciNetCrossRef
41.
go back to reference Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Hoboken (2004)MATH Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Hoboken (2004)MATH
42.
go back to reference Capuano, F., Coppola, G., Chiatto, M., de Luca, L.: Approximate projection method for the incompressible Navier–Stokes equations. AIAA J. 54(7), 2179–2182 (2016)CrossRef Capuano, F., Coppola, G., Chiatto, M., de Luca, L.: Approximate projection method for the incompressible Navier–Stokes equations. AIAA J. 54(7), 2179–2182 (2016)CrossRef
43.
go back to reference Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2006)MATH Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2006)MATH
44.
go back to reference Sanderse, B.: Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 233, 100–131 (2013)MathSciNetCrossRef Sanderse, B.: Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 233, 100–131 (2013)MathSciNetCrossRef
46.
go back to reference Capuano, F., Coppola, G., Rández, L., de Luca, L.: Explicit Runge–Kutta schemes for incompressible flow with improved energy-conservation properties. J. Comput. Phys. 328, 86–94 (2017)MathSciNetCrossRef Capuano, F., Coppola, G., Rández, L., de Luca, L.: Explicit Runge–Kutta schemes for incompressible flow with improved energy-conservation properties. J. Comput. Phys. 328, 86–94 (2017)MathSciNetCrossRef
47.
go back to reference Rosenbaum, J.: Conservation properties of numerical integration methods for systems of ordinary differential equations. J. Comput. Phys. 20, 259–267 (1976)MathSciNetCrossRef Rosenbaum, J.: Conservation properties of numerical integration methods for systems of ordinary differential equations. J. Comput. Phys. 20, 259–267 (1976)MathSciNetCrossRef
48.
go back to reference Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral methods. Evolution to complex geometries and applications to fluid dynamics. Springer, Berlin (2007)MATH Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral methods. Evolution to complex geometries and applications to fluid dynamics. Springer, Berlin (2007)MATH
49.
go back to reference Childress, S., Gilbert, A.D.: Stretch, Twist, Fold: the Fast Dynamo, vol. 37. Springer Science & Business Media, Berlin (2008)MATH Childress, S., Gilbert, A.D.: Stretch, Twist, Fold: the Fast Dynamo, vol. 37. Springer Science & Business Media, Berlin (2008)MATH
50.
go back to reference Kraichnan, R.H.: Helical turbulence and absolute equilibrium. J. Fluid Mech. 59(4), 745–752 (1973)CrossRef Kraichnan, R.H.: Helical turbulence and absolute equilibrium. J. Fluid Mech. 59(4), 745–752 (1973)CrossRef
51.
go back to reference Krstulovic, G., Mininni, P., Brachet, M., Pouquet, A.: Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows. Phys. Rev. E 79(5), 056,304 (2009)CrossRef Krstulovic, G., Mininni, P., Brachet, M., Pouquet, A.: Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows. Phys. Rev. E 79(5), 056,304 (2009)CrossRef
52.
go back to reference Kerr, R.M.: Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 31–58 (1985)CrossRef Kerr, R.M.: Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 31–58 (1985)CrossRef
53.
go back to reference Vallefuoco, D., Naso, A., Godeferd, F.: Small-scale anisotropy induced by spectral forcing and by rotation in non-helical and helical turbulence. J. Turbul (2017) Vallefuoco, D., Naso, A., Godeferd, F.: Small-scale anisotropy induced by spectral forcing and by rotation in non-helical and helical turbulence. J. Turbul (2017)
54.
go back to reference Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial–boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)MathSciNetCrossRef Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial–boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)MathSciNetCrossRef
55.
go back to reference Sanderse, B., Verstappen, R., Koren, B.: Boundary treatment for fourth-order staggered mesh discretizations of the incompressible Navier–Stokes equations. J. Comput. Phys. 257, 1472–1505 (2014)MathSciNetCrossRef Sanderse, B., Verstappen, R., Koren, B.: Boundary treatment for fourth-order staggered mesh discretizations of the incompressible Navier–Stokes equations. J. Comput. Phys. 257, 1472–1505 (2014)MathSciNetCrossRef
56.
go back to reference Sahoo, G., De Pietro, M., Biferale, L.: Helicity statistics in homogeneous and isotropic turbulence and turbulence models. Phys. Rev. Fluids 2(2), 024,601 (2017)CrossRef Sahoo, G., De Pietro, M., Biferale, L.: Helicity statistics in homogeneous and isotropic turbulence and turbulence models. Phys. Rev. Fluids 2(2), 024,601 (2017)CrossRef
Metadata
Title
Effects of Discrete Energy and Helicity Conservation in Numerical Simulations of Helical Turbulence
Authors
Francesco Capuano
Donato Vallefuoco
Publication date
08-06-2018
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 2/2018
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9939-x

Other articles of this Issue 2/2018

Flow, Turbulence and Combustion 2/2018 Go to the issue

Premium Partners