Skip to main content
Top
Published in: Journal of Materials Science 20/2018

26-06-2018 | Composites

Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites

Authors: B. R. C. de Menezes, F. V. Ferreira, B. C. Silva, E. A. N. Simonetti, T. M. Bastos, L. S. Cividanes, G. P. Thim

Published in: Journal of Materials Science | Issue 20/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Homogeneous dispersion of carbon nanotubes (CNTs) in polymers has significantly improved their processing and application as nanomaterials. Generally, CNTs tend to agglomerate due to their high aspect ratios and strong van der Waals interaction. Surface functionalization appears to be a solution to this problem. This study presents a controlled dispersion of carbon nanotubes in polyethylene through surface modification using a mixture of concentrated acid and octadecylamine (ODA). CNTs were characterized by Fourier transform infrared, Raman and X-ray photoelectron spectroscopy, and transmission electron microscopy. The results confirmed that carboxyl and alkane groups were successfully introduced on CNT surfaces. The acid- and amine-functionalized carbon nanotubes were dispersed in four solvents with different polarities (water, ethanol, acetone, and xylene) to correlate the degree of dispersion of CNT with their polarity. The results showed that CNT dispersion stability strongly depends on solvent and carbon nanotube polarities after the functionalization step. The nanohardness and tensile tests showed that the addition of CNTs, especially the functionalized with ODA, leaded the polymer harder, increasing its Young’s modulus and tensile strength. However, its toughness and deformation capacity were reduced. The potential applications of CNT-based polymer nanocomposites broaden considerably due to the surface engineering of carbon nanotubes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Yao X, Gao X, Jiang J, Xu C, Deng C, Wang J (2018) Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites. Compos Part B Eng 132:170–177CrossRef Yao X, Gao X, Jiang J, Xu C, Deng C, Wang J (2018) Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites. Compos Part B Eng 132:170–177CrossRef
6.
go back to reference Li Y, Wang S, He E, Wang Q (2016) The effect of sliding velocity on the tribological properties of polymer/carbon nanotube composites. Carbon 106:106–109CrossRef Li Y, Wang S, He E, Wang Q (2016) The effect of sliding velocity on the tribological properties of polymer/carbon nanotube composites. Carbon 106:106–109CrossRef
7.
go back to reference Huynh MTT, Nakayama T, Kawamoto A, Nguyen ST, Suzuki T, Suematsu H, Niihara K, Cho H-B, Choa Y-H (2016) Fabrication of stacked-cup carbon nanotube/polymer nanocomposite films with linear controlled percolation routes. Mater Chem Phys 171:39–44CrossRef Huynh MTT, Nakayama T, Kawamoto A, Nguyen ST, Suzuki T, Suematsu H, Niihara K, Cho H-B, Choa Y-H (2016) Fabrication of stacked-cup carbon nanotube/polymer nanocomposite films with linear controlled percolation routes. Mater Chem Phys 171:39–44CrossRef
9.
go back to reference Han B, Guo E, Xue X, Zhao Z, Luo L, Qu H, Niu T, Xu Y, Hou H (2017) Fabrication and densification of high performance carbon nanotube/copper composite fibers. Carbon 123:593–604CrossRef Han B, Guo E, Xue X, Zhao Z, Luo L, Qu H, Niu T, Xu Y, Hou H (2017) Fabrication and densification of high performance carbon nanotube/copper composite fibers. Carbon 123:593–604CrossRef
10.
go back to reference Lawal AT (2016) Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater Res Bull 73:308–350CrossRef Lawal AT (2016) Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater Res Bull 73:308–350CrossRef
11.
go back to reference Yourdkhani M, Hubert P (2015) A systematic study on dispersion stability of carbon nanotube-modified epoxy resins. Carbon 81:251–259CrossRef Yourdkhani M, Hubert P (2015) A systematic study on dispersion stability of carbon nanotube-modified epoxy resins. Carbon 81:251–259CrossRef
12.
go back to reference Aalaie J, Rahmatpour A, Maghami S (2007) Preparation and characterization of linear low density polyethylene/carbon nanotube nanocomposites. J Macromol Sci B 46(5):877–889CrossRef Aalaie J, Rahmatpour A, Maghami S (2007) Preparation and characterization of linear low density polyethylene/carbon nanotube nanocomposites. J Macromol Sci B 46(5):877–889CrossRef
13.
go back to reference Ham HT, Choi YS, Chung IJ (2005) An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J Colloid Interf Sci 286(1):216–223CrossRef Ham HT, Choi YS, Chung IJ (2005) An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J Colloid Interf Sci 286(1):216–223CrossRef
14.
go back to reference Yuan Z, Lu Z, Chen M, Yang Z, Xie F (2015) Interfacial properties of carboxylic acid functionalized CNT/polyethylene composites: a molecular dynamics simulation study. Appl Surf Sci 351:1043–1052CrossRef Yuan Z, Lu Z, Chen M, Yang Z, Xie F (2015) Interfacial properties of carboxylic acid functionalized CNT/polyethylene composites: a molecular dynamics simulation study. Appl Surf Sci 351:1043–1052CrossRef
15.
go back to reference Abdolmaleki A, Mallakpour S, Borandeh S (2013) Amino acid-functionalized multi-walled carbon nanotubes for improving compatibility with chiral poly (amide-ester-imide) containing l-phenylalanine and l-tyrosine linkages. Appl Surf Sci 287:117–123CrossRef Abdolmaleki A, Mallakpour S, Borandeh S (2013) Amino acid-functionalized multi-walled carbon nanotubes for improving compatibility with chiral poly (amide-ester-imide) containing l-phenylalanine and l-tyrosine linkages. Appl Surf Sci 287:117–123CrossRef
16.
go back to reference Cividanes L, Franceschi W, Ferreira FV, de Menezes BRC, Sales RCM, Thim GP (2017) How do CNT affect the branch and crosslink reactions in CNT-epoxy. Mater Res Express 4(10):105101CrossRef Cividanes L, Franceschi W, Ferreira FV, de Menezes BRC, Sales RCM, Thim GP (2017) How do CNT affect the branch and crosslink reactions in CNT-epoxy. Mater Res Express 4(10):105101CrossRef
18.
go back to reference Ansari R, Ajori S, Rouhi S (2015) Structural and elastic properties and stability characteristics of oxygenated carbon nanotubes under physical adsorption of polymers. Appl Surf Sci 332:640–647CrossRef Ansari R, Ajori S, Rouhi S (2015) Structural and elastic properties and stability characteristics of oxygenated carbon nanotubes under physical adsorption of polymers. Appl Surf Sci 332:640–647CrossRef
19.
go back to reference Redondo-Gómez C, Orozco F, Noeske P-LM, Soto-Tellini V, Corrales-Urena Y, Vega-Baudrit J (2017) Cholic acid covalently bound to multi-walled carbon nanotubes: improvements on dispersion stability. Mater Chem Phys 200:331–341CrossRef Redondo-Gómez C, Orozco F, Noeske P-LM, Soto-Tellini V, Corrales-Urena Y, Vega-Baudrit J (2017) Cholic acid covalently bound to multi-walled carbon nanotubes: improvements on dispersion stability. Mater Chem Phys 200:331–341CrossRef
20.
go back to reference Kharitonov AP, Maksimkin AV, Mostovaya KS, Kaloshkin SD, Gorshenkov MV, D’yachkova TP, Tkachev AG, Alekseiko LN (2015) Reinforcement of bulk ultrahigh molecular weight polyethylene by fluorinated carbon nanotubes insertion followed by hot pressing and orientation stretching. Compos Sci Technol 120:26–31CrossRef Kharitonov AP, Maksimkin AV, Mostovaya KS, Kaloshkin SD, Gorshenkov MV, D’yachkova TP, Tkachev AG, Alekseiko LN (2015) Reinforcement of bulk ultrahigh molecular weight polyethylene by fluorinated carbon nanotubes insertion followed by hot pressing and orientation stretching. Compos Sci Technol 120:26–31CrossRef
21.
go back to reference Shi X, Jiang B, Wang J, Yang Y (2012) Influence of wall number and surface functionalization of carbon nanotubes on their antioxidant behavior in high density polyethylene. Carbon 50(3):1005–1013CrossRef Shi X, Jiang B, Wang J, Yang Y (2012) Influence of wall number and surface functionalization of carbon nanotubes on their antioxidant behavior in high density polyethylene. Carbon 50(3):1005–1013CrossRef
22.
go back to reference Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MS, Simões JA (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67(15–16):3071–3077CrossRef Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MS, Simões JA (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67(15–16):3071–3077CrossRef
24.
go back to reference Salam MA, Burk R (2017) Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol. Arab J Chem 10:S921–S927CrossRef Salam MA, Burk R (2017) Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol. Arab J Chem 10:S921–S927CrossRef
25.
go back to reference Antunes E, Almeida E, Rosa C, de Medeiros L, Pardini L, Massi M, Corat E (2010) Thermal annealing and electrochemical purification of multi-walled carbon nanotubes produced by camphor/ferrocene mixtures. J Nanosci Nanotechnol 10(2):1296–1303CrossRef Antunes E, Almeida E, Rosa C, de Medeiros L, Pardini L, Massi M, Corat E (2010) Thermal annealing and electrochemical purification of multi-walled carbon nanotubes produced by camphor/ferrocene mixtures. J Nanosci Nanotechnol 10(2):1296–1303CrossRef
26.
go back to reference Francisco W, Ferreira FV, Ferreira EV, Cividanes LdS, Coutinho AdR, Thim GP (2015) Functionalization of multi-walled carbon nanotube and mechanical property of epoxy-based nanocomposite. J Aerospace Technol Manag 7(3):289–293CrossRef Francisco W, Ferreira FV, Ferreira EV, Cividanes LdS, Coutinho AdR, Thim GP (2015) Functionalization of multi-walled carbon nanotube and mechanical property of epoxy-based nanocomposite. J Aerospace Technol Manag 7(3):289–293CrossRef
27.
go back to reference Ferreira FV, Francisco W, de Menezes BRC, Cividanes LDS, dos Reis Coutinho A, Thim GP (2015) Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents. Appl Surf Sci 357:2154–2159CrossRef Ferreira FV, Francisco W, de Menezes BRC, Cividanes LDS, dos Reis Coutinho A, Thim GP (2015) Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents. Appl Surf Sci 357:2154–2159CrossRef
28.
29.
go back to reference Cividanes L, Brunelli D, Antunes E, Corat E, Sakane K, Thim G (2013) Cure study of epoxy resin reinforced with multiwalled carbon nanotubes by Raman and luminescence spectroscopy. J Appl Polym Sci 127(1):544–553CrossRef Cividanes L, Brunelli D, Antunes E, Corat E, Sakane K, Thim G (2013) Cure study of epoxy resin reinforced with multiwalled carbon nanotubes by Raman and luminescence spectroscopy. J Appl Polym Sci 127(1):544–553CrossRef
30.
go back to reference Jin SH, Park Y-B, Yoon KH (2007) Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composite. Compos Sci Technol 67(15):3434–3441CrossRef Jin SH, Park Y-B, Yoon KH (2007) Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composite. Compos Sci Technol 67(15):3434–3441CrossRef
31.
go back to reference Smith AL (1979) Applied infrared spectroscopy, fundamentals, techniques, and analytical problem solving, vol 54. Chem Anal. Wiley, New York Smith AL (1979) Applied infrared spectroscopy, fundamentals, techniques, and analytical problem solving, vol 54. Chem Anal. Wiley, New York
32.
go back to reference Vuković G, Marinković A, Obradović M, Radmilović V, Čolić M, Aleksić R, Uskoković PS (2009) Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes. Appl Surf Sci 255(18):8067–8075CrossRef Vuković G, Marinković A, Obradović M, Radmilović V, Čolić M, Aleksić R, Uskoković PS (2009) Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes. Appl Surf Sci 255(18):8067–8075CrossRef
33.
go back to reference Ferreira FV, Cividanes LDS, Brito FS, de Menezes BRC, Franceschi W, Simonetti EAN, Thim GP (2016) Functionalization of graphene and applications. In: Functionalizing graphene and carbon nanotubes. SpringerBriefs in applied sciences and technology. Springer, Cham, pp 1–29 Ferreira FV, Cividanes LDS, Brito FS, de Menezes BRC, Franceschi W, Simonetti EAN, Thim GP (2016) Functionalization of graphene and applications. In: Functionalizing graphene and carbon nanotubes. SpringerBriefs in applied sciences and technology. Springer, Cham, pp 1–29
34.
go back to reference Rahimpour A, Jahanshahi M, Khalili S, Mollahosseini A, Zirepour A, Rajaeian B (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286:99–107CrossRef Rahimpour A, Jahanshahi M, Khalili S, Mollahosseini A, Zirepour A, Rajaeian B (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286:99–107CrossRef
35.
go back to reference Pang H, Piao Y-Y, Cui C-H, Bao Y, Lei J, Yuan G-P, Zhang C-L (2013) Preparation and performance of segregated polymer composites with hybrid fillers of octadecylamine functionalized graphene and carbon nanotubes. J Polym Res 20(11):304CrossRef Pang H, Piao Y-Y, Cui C-H, Bao Y, Lei J, Yuan G-P, Zhang C-L (2013) Preparation and performance of segregated polymer composites with hybrid fillers of octadecylamine functionalized graphene and carbon nanotubes. J Polym Res 20(11):304CrossRef
36.
go back to reference Zhang X, Huang Q, Liu M, Tian J, Zeng G, Li Z, Wang K, Zhang Q, Wan Q, Deng F (2015) Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu 2 + removal. Appl Surf Sci 343:19–27CrossRef Zhang X, Huang Q, Liu M, Tian J, Zeng G, Li Z, Wang K, Zhang Q, Wan Q, Deng F (2015) Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu 2 + removal. Appl Surf Sci 343:19–27CrossRef
37.
go back to reference Boncel S, Koziol KK (2014) Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon. Appl Surf Sci 301:488–491CrossRef Boncel S, Koziol KK (2014) Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon. Appl Surf Sci 301:488–491CrossRef
38.
go back to reference Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840CrossRef Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840CrossRef
39.
go back to reference Sobkowicz MJ, Dorgan JR, Gneshin KW, Herring AM, McKinnon JT (2009) Controlled dispersion of carbon nanospheres through surface functionalization. Carbon 47(3):622–628CrossRef Sobkowicz MJ, Dorgan JR, Gneshin KW, Herring AM, McKinnon JT (2009) Controlled dispersion of carbon nanospheres through surface functionalization. Carbon 47(3):622–628CrossRef
40.
go back to reference Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41CrossRef Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41CrossRef
41.
go back to reference Scaffaro R, Maio A (2012) Enhancing the mechanical performance of polymer based nanocomposites by plasma-modification of nanoparticles. Polym Test 31(7):889–894CrossRef Scaffaro R, Maio A (2012) Enhancing the mechanical performance of polymer based nanocomposites by plasma-modification of nanoparticles. Polym Test 31(7):889–894CrossRef
42.
go back to reference Vix-Guterl C, Couzi M, Dentzer J, Trinquecoste M, Delhaes P (2004) Surface characterizations of carbon multiwall nanotubes: comparison between surface active sites and Raman spectroscopy. J Phys Chem B 108(50):19361–19367CrossRef Vix-Guterl C, Couzi M, Dentzer J, Trinquecoste M, Delhaes P (2004) Surface characterizations of carbon multiwall nanotubes: comparison between surface active sites and Raman spectroscopy. J Phys Chem B 108(50):19361–19367CrossRef
43.
go back to reference Ferreira FV, Cividanes LDS, Brito FS, Menezes BRCd, Franceschi W, Simonetti EAN, Thim GP (2016) Functionalizing Graphene and carbon nanotubes: a review. Springer, New yorkCrossRef Ferreira FV, Cividanes LDS, Brito FS, Menezes BRCd, Franceschi W, Simonetti EAN, Thim GP (2016) Functionalizing Graphene and carbon nanotubes: a review. Springer, New yorkCrossRef
45.
go back to reference Dintcheva NT, Arrigo R, Morici E, Gambarotti C, Carroccio S, Cicogna F, Filippone G (2015) Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight polyethylene-based nanocomposites. Compos Part B Eng 82:196–204CrossRef Dintcheva NT, Arrigo R, Morici E, Gambarotti C, Carroccio S, Cicogna F, Filippone G (2015) Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight polyethylene-based nanocomposites. Compos Part B Eng 82:196–204CrossRef
46.
go back to reference Dresselhaus M, Jorio A, Souza Filho A, Saito R (2010) Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos Trans R Soc A 368(1932):5355–5377CrossRef Dresselhaus M, Jorio A, Souza Filho A, Saito R (2010) Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos Trans R Soc A 368(1932):5355–5377CrossRef
47.
go back to reference Swartz WE Jr (1973) X-ray photoelectron spectroscopy. Anal Chem 45(9):788A–800aCrossRef Swartz WE Jr (1973) X-ray photoelectron spectroscopy. Anal Chem 45(9):788A–800aCrossRef
48.
go back to reference Mattevi C, Wirth CT, Hofmann S, Blume R, Cantoro M, Ducati C, Cepek C, Knop-Gericke A, Milne S, Castellarin-Cudia C (2008) In-situ X-ray photoelectron spectroscopy study of catalyst–support interactions and growth of carbon nanotube forests. J Phys Chem C 112(32):12207–12213CrossRef Mattevi C, Wirth CT, Hofmann S, Blume R, Cantoro M, Ducati C, Cepek C, Knop-Gericke A, Milne S, Castellarin-Cudia C (2008) In-situ X-ray photoelectron spectroscopy study of catalyst–support interactions and growth of carbon nanotube forests. J Phys Chem C 112(32):12207–12213CrossRef
49.
go back to reference Seah M (1986) Data compilations: their use to improve measurement certainty in surface analysis by AES and XPS. Surf Interf Anal 9(2):85–98CrossRef Seah M (1986) Data compilations: their use to improve measurement certainty in surface analysis by AES and XPS. Surf Interf Anal 9(2):85–98CrossRef
50.
go back to reference Oswald S (2013) X-ray photoelectron spectroscopy in analysis of surfaces. Encyclopedia of Analytical Chemistry. Wiley, New York Oswald S (2013) X-ray photoelectron spectroscopy in analysis of surfaces. Encyclopedia of Analytical Chemistry. Wiley, New York
51.
go back to reference Watts JF (1994) X-ray photoelectron spectroscopy. Surf Sci Tech 45(6–7):653–671 Watts JF (1994) X-ray photoelectron spectroscopy. Surf Sci Tech 45(6–7):653–671
52.
go back to reference Lakshminarayanan PV, Toghiani H, Pittman CU Jr (2004) Nitric acid oxidation of vapor grown carbon nanofibers. Carbon 42(12–13):2433–2442CrossRef Lakshminarayanan PV, Toghiani H, Pittman CU Jr (2004) Nitric acid oxidation of vapor grown carbon nanofibers. Carbon 42(12–13):2433–2442CrossRef
53.
go back to reference Ferreira FV, Cividanes LDS, Brito FS, de Menezes BRC, Franceschi W, Simonetti EAN, Thim GP (2016) Functionalization of carbon nanotube and applications. In: Functionalizing graphene and carbon nanotubes. SpringerBriefs in applied sciences and technology. Springer, Cham, pp 31–61 Ferreira FV, Cividanes LDS, Brito FS, de Menezes BRC, Franceschi W, Simonetti EAN, Thim GP (2016) Functionalization of carbon nanotube and applications. In: Functionalizing graphene and carbon nanotubes. SpringerBriefs in applied sciences and technology. Springer, Cham, pp 31–61
54.
go back to reference Ma P-C, Mo S-Y, Tang B-Z, Kim J-K (2010) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48(6):1824–1834CrossRef Ma P-C, Mo S-Y, Tang B-Z, Kim J-K (2010) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48(6):1824–1834CrossRef
55.
go back to reference Soares MC, Viana MM, Schaefer ZL, Gangoli VS, Cheng Y, Caliman V, Wong MS, Silva GG (2014) Surface modification of carbon black nanoparticles by dodecylamine: thermal stability and phase transfer in brine medium. Carbon 72:287–295CrossRef Soares MC, Viana MM, Schaefer ZL, Gangoli VS, Cheng Y, Caliman V, Wong MS, Silva GG (2014) Surface modification of carbon black nanoparticles by dodecylamine: thermal stability and phase transfer in brine medium. Carbon 72:287–295CrossRef
56.
go back to reference Sun W, Liu Z, Jiang C, Xue Y, Chu W, Zhao X (2013) Experimental and theoretical investigation on the interaction between palladium nanoparticles and functionalized carbon nanotubes for Heck synthesis. Catal Today 212:206–214CrossRef Sun W, Liu Z, Jiang C, Xue Y, Chu W, Zhao X (2013) Experimental and theoretical investigation on the interaction between palladium nanoparticles and functionalized carbon nanotubes for Heck synthesis. Catal Today 212:206–214CrossRef
57.
go back to reference Radovic L, Silva I, Ume J, Menendez J, Leon CLY, Scaroni A (1997) An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons. Carbon 35(9):1339–1348CrossRef Radovic L, Silva I, Ume J, Menendez J, Leon CLY, Scaroni A (1997) An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons. Carbon 35(9):1339–1348CrossRef
58.
go back to reference Kundu S, Xia W, Busser W, Becker M, Schmidt DA, Havenith M, Muhler M (2010) The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Phys Chem Chem Phys 12(17):4351–4359CrossRef Kundu S, Xia W, Busser W, Becker M, Schmidt DA, Havenith M, Muhler M (2010) The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Phys Chem Chem Phys 12(17):4351–4359CrossRef
59.
go back to reference Ramanathan T, Fisher F, Ruoff R, Brinson L (2005) Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater 17(6):1290–1295CrossRef Ramanathan T, Fisher F, Ruoff R, Brinson L (2005) Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater 17(6):1290–1295CrossRef
60.
go back to reference Wang R, Wang H, Sun L, Wang E, Zhu Y, Zhu Y (2016) The fabrication and tribological behavior of epoxy composites modified by the three-dimensional polyurethane sponge reinforced with dopamine functionalized carbon nanotubes. Appl Surf Sci 360:37–44CrossRef Wang R, Wang H, Sun L, Wang E, Zhu Y, Zhu Y (2016) The fabrication and tribological behavior of epoxy composites modified by the three-dimensional polyurethane sponge reinforced with dopamine functionalized carbon nanotubes. Appl Surf Sci 360:37–44CrossRef
61.
go back to reference Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry. Wiley, New York Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry. Wiley, New York
62.
go back to reference Shieh Y-T, Liu G-L, Wu H-H, Lee C-C (2007) Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon 45(9):1880–1890CrossRef Shieh Y-T, Liu G-L, Wu H-H, Lee C-C (2007) Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon 45(9):1880–1890CrossRef
63.
go back to reference Zhao Z, Yang Z, Hu Y, Li J, Fan X (2013) Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci 276:476–481CrossRef Zhao Z, Yang Z, Hu Y, Li J, Fan X (2013) Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci 276:476–481CrossRef
64.
go back to reference Ferreira C, Dal Castel C, Oviedo M, Mauler R (2013) Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim Acta 553:40–48CrossRef Ferreira C, Dal Castel C, Oviedo M, Mauler R (2013) Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim Acta 553:40–48CrossRef
65.
go back to reference Kim J, Kwak S, Hong SM, Lee JR, Takahara A, Seo Y (2010) Nonisothermal crystallization behaviors of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes. Macromol 43(24):10545–10553CrossRef Kim J, Kwak S, Hong SM, Lee JR, Takahara A, Seo Y (2010) Nonisothermal crystallization behaviors of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes. Macromol 43(24):10545–10553CrossRef
66.
go back to reference Grady BP (2012) Effects of carbon nanotubes on polymer physics. J Polym Sci Polym Phys 50(9):591–623CrossRef Grady BP (2012) Effects of carbon nanotubes on polymer physics. J Polym Sci Polym Phys 50(9):591–623CrossRef
67.
go back to reference Ferreira FV, Francisco W, Menezes BR, Brito FS, Coutinho AS, Cividanes LS, Coutinho AR, Thim GP (2016) Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Appl Surf Sci 389:921–929CrossRef Ferreira FV, Francisco W, Menezes BR, Brito FS, Coutinho AS, Cividanes LS, Coutinho AR, Thim GP (2016) Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Appl Surf Sci 389:921–929CrossRef
68.
go back to reference Peneva Y, Valcheva M, Minkova L, Mičušík M, Omastová M (2008) Nonisothermal crystallization kinetics and microhardness of PP/CNT composites. J Macromol Sci B 47(6):1197–1210CrossRef Peneva Y, Valcheva M, Minkova L, Mičušík M, Omastová M (2008) Nonisothermal crystallization kinetics and microhardness of PP/CNT composites. J Macromol Sci B 47(6):1197–1210CrossRef
69.
go back to reference Dutta A, Penumadu D, Files B (2004) Nanoindentation testing for evaluating modulus and hardness of single-walled carbon nanotube–reinforced epoxy composites. J Mater Res 19(1):158–164CrossRef Dutta A, Penumadu D, Files B (2004) Nanoindentation testing for evaluating modulus and hardness of single-walled carbon nanotube–reinforced epoxy composites. J Mater Res 19(1):158–164CrossRef
70.
go back to reference Vega J, Martinez-Salazar J, Trujillo M, Arnal M, Muller A, Bredeau S, Dubois P (2009) Rheology, processing, tensile properties, and crystallization of polyethylene/carbon nanotube nanocomposites. Macromol 42(13):4719–4727CrossRef Vega J, Martinez-Salazar J, Trujillo M, Arnal M, Muller A, Bredeau S, Dubois P (2009) Rheology, processing, tensile properties, and crystallization of polyethylene/carbon nanotube nanocomposites. Macromol 42(13):4719–4727CrossRef
71.
go back to reference Zou Y, Feng Y, Wang L, Liu X (2004) Processing and properties of MWNT/HDPE composites. Carbon 42(2):271–277CrossRef Zou Y, Feng Y, Wang L, Liu X (2004) Processing and properties of MWNT/HDPE composites. Carbon 42(2):271–277CrossRef
72.
go back to reference Mohsin MA, Arsad A, Alothman OY (2014) Enhanced thermal, mechanical and morphological properties of CNT/HDPE nanocomposite using MMT as secondary filler. WASET 8(2):117–120 Mohsin MA, Arsad A, Alothman OY (2014) Enhanced thermal, mechanical and morphological properties of CNT/HDPE nanocomposite using MMT as secondary filler. WASET 8(2):117–120
73.
go back to reference Michler GH, Balta-Calleja FJ (2016) Mechanical properties of polymers based on nanostructure and morphology, vol 71. CRC Press, New York Michler GH, Balta-Calleja FJ (2016) Mechanical properties of polymers based on nanostructure and morphology, vol 71. CRC Press, New York
74.
go back to reference Yang BX, Pramoda KP, Xu GQ, Goh SH (2007) Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes. Adv Funct Mater 17(13):2062–2069CrossRef Yang BX, Pramoda KP, Xu GQ, Goh SH (2007) Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes. Adv Funct Mater 17(13):2062–2069CrossRef
Metadata
Title
Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites
Authors
B. R. C. de Menezes
F. V. Ferreira
B. C. Silva
E. A. N. Simonetti
T. M. Bastos
L. S. Cividanes
G. P. Thim
Publication date
26-06-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 20/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2627-3

Other articles of this Issue 20/2018

Journal of Materials Science 20/2018 Go to the issue

Premium Partners