Skip to main content
Top

2017 | OriginalPaper | Chapter

Efficient Deep Belief Network Based Hyperspectral Image Classification

Authors : Atif Mughees, Linmi Tao

Published in: Image and Graphics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hyperspectral Image (HSI) classification plays a key role remote sensing field. Recently, deep learning has demonstrated its effectiveness in HSI Classification field. This paper presents a spectral-spatial HSI classification technique established on the deep learning based deep belief network (DBN) for deep and abstract feature extraction and adaptive boundary adjustment based segmentation. Proposed approach focuses on integrating the deep learning based spectral features and segmentation based spatial features into a framework for improved performance. Specifically, first the deep DBN model is exploited as a spectral feature extraction based classifier to extract the deep spectral features. Second, spatial contextual features are obtained by utilizing effective adaptive boundary adjustment based segmentation technique. Finally, maximum voting based criteria is operated to integrate the results of extracted spectral and spatial information for improved HSI classification. In general, exploiting spectral features from DBN process and spatial features from segmentation and integration of spectral and spatial information by maximum voting based criteria, has a substantial effect on the performance of HSI classification. Experimental performance on real and widely used hyperspectral data sets with different contexts and resolutions demonstrates the accuracy of the proposed technique and performance is comparable to several recently proposed HSI classification techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ambikapathi, A., et al.: Convex geometry based outlier-insensitive estimation of number of endmembers in hyperspectral images. Signal 1, 1–20 (2012) Ambikapathi, A., et al.: Convex geometry based outlier-insensitive estimation of number of endmembers in hyperspectral images. Signal 1, 1–20 (2012)
2.
go back to reference Benediktsson, J.A., Chanussot, J.C., Moon, W.M., et al.: Advances in Very high-resolution Remote Sensins. IEEE (2013) Benediktsson, J.A., Chanussot, J.C., Moon, W.M., et al.: Advances in Very high-resolution Remote Sensins. IEEE (2013)
3.
go back to reference Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRef Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRef
4.
go back to reference Camps-Valls, G., et al.: Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 31(1), 45–54 (2013)CrossRef Camps-Valls, G., et al.: Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 31(1), 45–54 (2013)CrossRef
5.
go back to reference Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 51(1), 217–231 (2013)CrossRef Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 51(1), 217–231 (2013)CrossRef
6.
go back to reference Chen, Y., Zhao, X., Jia, X.: Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 8(6), 2381–2392 (2015)CrossRef Chen, Y., Zhao, X., Jia, X.: Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 8(6), 2381–2392 (2015)CrossRef
7.
go back to reference Ghamisi, P., Benediktsson, J.A., Sveinsson, J.R.: Automatic spectral-spatial classification framework based on attribute profiles and supervised feature extraction. IEEE Trans. Geosci. Remote Sens. 52(9), 5771–5782 (2014)CrossRef Ghamisi, P., Benediktsson, J.A., Sveinsson, J.R.: Automatic spectral-spatial classification framework based on attribute profiles and supervised feature extraction. IEEE Trans. Geosci. Remote Sens. 52(9), 5771–5782 (2014)CrossRef
8.
go back to reference Ghamisi, P., et al.: Automatic framework for spectral-spatial classification based on supervised feature extraction and morphological attribute profiles. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 7(6), 2147–2160 (2014)CrossRef Ghamisi, P., et al.: Automatic framework for spectral-spatial classification based on supervised feature extraction and morphological attribute profiles. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 7(6), 2147–2160 (2014)CrossRef
9.
go back to reference Gualtieri, J.A., Chettri, S.: Support vector machines for classification of hyperspectral data. In: IEEE 2000 International Geoscience and Remote Sensing Symposium, Proceedings, IGARSS 2000, vol. 2, pp. 813–815. IEEE (2000) Gualtieri, J.A., Chettri, S.: Support vector machines for classification of hyperspectral data. In: IEEE 2000 International Geoscience and Remote Sensing Symposium, Proceedings, IGARSS 2000, vol. 2, pp. 813–815. IEEE (2000)
12.
go back to reference Hu, W., et al.: Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015 (2015) Hu, W., et al.: Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015 (2015)
13.
go back to reference Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)CrossRef Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)CrossRef
14.
go back to reference Lam, L., Suen, S.Y.: Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 27(5), 553–568 (1997)CrossRef Lam, L., Suen, S.Y.: Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 27(5), 553–568 (1997)CrossRef
15.
go back to reference Li, J., Zhang, H., Zhang, L.: Supervised segmentation of very high resolution images by the use of extended morphological attribute profiles and a sparse transform. IEEE Geosci. Remote Sens. Lett. 11(8), 1409–1413 (2014)CrossRef Li, J., Zhang, H., Zhang, L.: Supervised segmentation of very high resolution images by the use of extended morphological attribute profiles and a sparse transform. IEEE Geosci. Remote Sens. Lett. 11(8), 1409–1413 (2014)CrossRef
16.
go back to reference Li, J., Bioucas-Dias, J.M.: Hyperspectral image segmentation using a new Bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 49(10), 3947–3960 (2011)CrossRef Li, J., Bioucas-Dias, J.M.: Hyperspectral image segmentation using a new Bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 49(10), 3947–3960 (2011)CrossRef
17.
go back to reference Li, J., et al.: Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 51(9), 4816–4829 (2013)CrossRef Li, J., et al.: Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 51(9), 4816–4829 (2013)CrossRef
18.
go back to reference Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)CrossRef Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)CrossRef
19.
go back to reference Mohamed, A., Dahl, G., Hinton, G.E.: Deep belief networks for phone recognition. In: NIPS Workshop on Deep Learning for Speech Recognition and Related Applications, vol. 1, no. 9, p. 39 (2009) Mohamed, A., Dahl, G., Hinton, G.E.: Deep belief networks for phone recognition. In: NIPS Workshop on Deep Learning for Speech Recognition and Related Applications, vol. 1, no. 9, p. 39 (2009)
20.
go back to reference Mughees, A., Chen, X., Tao, L.: Unsupervised hyperspectral image segmentation: merging spectral and spatial information in boundary adjustment. In: 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 1466–1471. IEEE (2016) Mughees, A., Chen, X., Tao, L.: Unsupervised hyperspectral image segmentation: merging spectral and spatial information in boundary adjustment. In: 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 1466–1471. IEEE (2016)
21.
go back to reference Mughees, A., Tao, L.: Efficient deep auto-encoder learning for the classification of hyperspectral images. In: 2016 International Conference on Virtual Reality and Visualization (ICVRV), pp. 44–51. IEEE (2016) Mughees, A., Tao, L.: Efficient deep auto-encoder learning for the classification of hyperspectral images. In: 2016 International Conference on Virtual Reality and Visualization (ICVRV), pp. 44–51. IEEE (2016)
22.
go back to reference Mughees, A., Tao, L.: Hyper-voxel based deep learning for hyperspectral image classification. In: 2017 IEEE International Conference on Image Processing (ICIP) (2017, Accepted) Mughees, A., Tao, L.: Hyper-voxel based deep learning for hyperspectral image classification. In: 2017 IEEE International Conference on Image Processing (ICIP) (2017, Accepted)
23.
go back to reference Mughees, A., et al.: AB3C: adaptive boundary-based band-categorization of hyperspectral images. J. Appl. Remote Sens. 10(4), 046009–046009 (2016)CrossRef Mughees, A., et al.: AB3C: adaptive boundary-based band-categorization of hyperspectral images. J. Appl. Remote Sens. 10(4), 046009–046009 (2016)CrossRef
24.
go back to reference Ratle, F., Camps-Valls, G., Weston, J.: Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48(5), 2271–2282 (2010)CrossRef Ratle, F., Camps-Valls, G., Weston, J.: Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48(5), 2271–2282 (2010)CrossRef
25.
go back to reference Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral image classification. Surveying Land Inform. Sci. 62(2), 115 (2002) Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral image classification. Surveying Land Inform. Sci. 62(2), 115 (2002)
26.
go back to reference Tarabalka, Y.: Classification of hyperspectral data using spectral-spatial approaches. PhD thesis, Institut National Polytechnique de Grenoble-INPG (2010) Tarabalka, Y.: Classification of hyperspectral data using spectral-spatial approaches. PhD thesis, Institut National Polytechnique de Grenoble-INPG (2010)
27.
go back to reference Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefMATH Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefMATH
28.
go back to reference Wang, J., Chang, C.-I.: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44(6), 1586–1600 (2006)CrossRef Wang, J., Chang, C.-I.: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44(6), 1586–1600 (2006)CrossRef
29.
go back to reference Willett, R.M., et al.: Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection. IEEE Signal Process. Mag. 31(1), 116–126 (2014)CrossRef Willett, R.M., et al.: Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection. IEEE Signal Process. Mag. 31(1), 116–126 (2014)CrossRef
30.
go back to reference Yu, D., Deng, L., Wang, S.: Learning in the deep-structured conditional random fields. In: Proceedings of NIPS Workshop, pp. 1–8 (2009) Yu, D., Deng, L., Wang, S.: Learning in the deep-structured conditional random fields. In: Proceedings of NIPS Workshop, pp. 1–8 (2009)
31.
go back to reference Zhang, L., Zhang, L., Bo, D.: Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Trans. Geosci. Remote Sens. 4(2), 22–40 (2016)CrossRef Zhang, L., Zhang, L., Bo, D.: Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Trans. Geosci. Remote Sens. 4(2), 22–40 (2016)CrossRef
32.
go back to reference Zhang, L., Zhang, L., Du, B.: Learning conditional random fields for classification of hyperspectral images. IEEE Trans. Image Process. 19(7), 1890–1907 (2010)MathSciNetCrossRef Zhang, L., Zhang, L., Du, B.: Learning conditional random fields for classification of hyperspectral images. IEEE Trans. Image Process. 19(7), 1890–1907 (2010)MathSciNetCrossRef
33.
go back to reference Zhou, Y., Peng, J., Chen, C.L.P.: Extreme learning machine with composite kernels for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 8(6), 2351–2360 (2015)CrossRef Zhou, Y., Peng, J., Chen, C.L.P.: Extreme learning machine with composite kernels for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 8(6), 2351–2360 (2015)CrossRef
34.
go back to reference Zhu, Z., et al.: Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ. 117, 72–82 (2012)CrossRef Zhu, Z., et al.: Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ. 117, 72–82 (2012)CrossRef
Metadata
Title
Efficient Deep Belief Network Based Hyperspectral Image Classification
Authors
Atif Mughees
Linmi Tao
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-71598-8_31

Premium Partner