Skip to main content
Top
Published in: Journal of Polymer Research 6/2020

01-06-2020 | ORIGINAL PAPER

Electrical conductivity of polystyrene/poly(n-alkyl methacrylate)s / carbon nanotube ternary composite casting films

Authors: Huagen Xu, Dirk W. Schubert

Published in: Journal of Polymer Research | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, poly(n-alkyl methacrylate)s (P-alkyl-MA)/Polystyrene (PS)/Carbon nanotube (CNT) composite films with different CNT concentration and polymer blend ratio were prepared utilizing solution casting method. Light microscope and scanning electron microscope were used to investigate the CNT location in polymer blends and morphology of ternary composite films. The electrical conductivity of the films were investigated, all the percolation thresholds (ϕc) of PS/P-alkyl-MA/CNT composite films were determined and the experimental data are fitted utilizing McLachlan’s equation. The fitting data indicate both PS/PMMA/CNT and PS/PEMA/CNT composite films show an obviously double percolation effect with polymer blend ratio at 50/50. Compared with pure PMMA and PEMA, the ϕc of composite films when polymer blend ratio at PS /PMMA =50/50 and PS/PEMA =50/50 were decreased by 69.0% and 73.1%, respectively. A contour plot based on all PS/PMMA/CNT and PS/PEMA/CNT experimental data were presented to show the electrical conductivity as a function of CNT concentration and polymer blend ratio. With PS content increasing in P-alkyl-MA/PS blends, the conductivity of both PS/PMMA/ CNT and PS/PEMA/ CNT composite films shows a similar tendency. The morphology with different polymer blend ratio at a certain CNT concentration and different CNT concentration at a certain polymer blend ratio was presented to explain the conductivity and ϕc of ternary composite films changing tendency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Rahman R, Soltanian S, Servati P (2015) Coupled effects of film thickness and filler length on conductivity and strain sensitivity of carbon nanotube/polymer composite thin films. IEEE Sensors J 16(1):77–87CrossRef Rahman R, Soltanian S, Servati P (2015) Coupled effects of film thickness and filler length on conductivity and strain sensitivity of carbon nanotube/polymer composite thin films. IEEE Sensors J 16(1):77–87CrossRef
2.
go back to reference Gao C, Zhang SL, Han B, Sun HJ, Wang GB, Jiang ZH (2014) Multi-walled carbon nanotube induced co-continuity of poly (ether ether ketone)/polyimide blends for high performance conductive materials. RSC Adv 4(79):42175–42182CrossRef Gao C, Zhang SL, Han B, Sun HJ, Wang GB, Jiang ZH (2014) Multi-walled carbon nanotube induced co-continuity of poly (ether ether ketone)/polyimide blends for high performance conductive materials. RSC Adv 4(79):42175–42182CrossRef
3.
go back to reference Ansari MO, Alshahrie A, Ansari SA (2019) Facile route to porous polyaniline@ nanodiamond-graphene based nanohybrid structures for DC electrical conductivity retention and supercapacitor applications. J Polym Res 26(3):76CrossRef Ansari MO, Alshahrie A, Ansari SA (2019) Facile route to porous polyaniline@ nanodiamond-graphene based nanohybrid structures for DC electrical conductivity retention and supercapacitor applications. J Polym Res 26(3):76CrossRef
4.
go back to reference Jia LC, Li MZ, Yan DX, Cui CH, Wu HY, Li ZM (2017) A strong and tough polymer–carbon nanotube film for flexible and efficient electromagnetic interference shielding. J Mater Chem C 5(35):8944–8951CrossRef Jia LC, Li MZ, Yan DX, Cui CH, Wu HY, Li ZM (2017) A strong and tough polymer–carbon nanotube film for flexible and efficient electromagnetic interference shielding. J Mater Chem C 5(35):8944–8951CrossRef
5.
go back to reference Zhang YY, Li ZJ, Li H, Gao JX, Zhang JP, Zeng YK (2014) Effect of carbon nanotubes shape on the properties of multiwall carbon nanotubes/polyethylene flexible transparent conductive films. J Mater Sci-Mater El 25(6):2692–2696CrossRef Zhang YY, Li ZJ, Li H, Gao JX, Zhang JP, Zeng YK (2014) Effect of carbon nanotubes shape on the properties of multiwall carbon nanotubes/polyethylene flexible transparent conductive films. J Mater Sci-Mater El 25(6):2692–2696CrossRef
6.
go back to reference Zhao B, Zhao CX, Li RS, Hamidinejad SM, Park CB (2017) Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly (vinylidene fluoride)/carbon composite films. ACS Appl Mater Inter 9(24):20873–20884CrossRef Zhao B, Zhao CX, Li RS, Hamidinejad SM, Park CB (2017) Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly (vinylidene fluoride)/carbon composite films. ACS Appl Mater Inter 9(24):20873–20884CrossRef
7.
go back to reference Arboleda-Clemente L, Ares-Pernas A, García X, Dopico S, Abad MJ (2017) Segregated conductive network of MWCNT in PA12/PA6 composites: electrical and rheological behavior. Polym Compos 38(12):2679–2686CrossRef Arboleda-Clemente L, Ares-Pernas A, García X, Dopico S, Abad MJ (2017) Segregated conductive network of MWCNT in PA12/PA6 composites: electrical and rheological behavior. Polym Compos 38(12):2679–2686CrossRef
8.
go back to reference Tondnevis F, Keshvari H, Mohandesi JA (2019) Physico-mechanical and in vitro characterization of electrically conductive electrospun nanofibers of poly urethane/single walled carbon nano tube by great endothelial cells adhesion for vascular tissue engineering. J Polym Res 26(11):256CrossRef Tondnevis F, Keshvari H, Mohandesi JA (2019) Physico-mechanical and in vitro characterization of electrically conductive electrospun nanofibers of poly urethane/single walled carbon nano tube by great endothelial cells adhesion for vascular tissue engineering. J Polym Res 26(11):256CrossRef
9.
go back to reference Patel KK, Purohit R, Hashmi SAR, Gupta RK (2020) Effect of the diameter of MWCNTs on shape memory and mechanical properties of polyurethane composites. J Polym Res 27(2):29CrossRef Patel KK, Purohit R, Hashmi SAR, Gupta RK (2020) Effect of the diameter of MWCNTs on shape memory and mechanical properties of polyurethane composites. J Polym Res 27(2):29CrossRef
10.
go back to reference Huang CW, Mohamed MG, Zhu CY, Kuo SW (2016) Functional supramolecular polypeptides involving π–π stacking and strong hydrogen-bonding interactions: a conformation study toward carbon nanotubes (CNTs) dispersion. Macromolecules 49(15):5374–5385CrossRef Huang CW, Mohamed MG, Zhu CY, Kuo SW (2016) Functional supramolecular polypeptides involving π–π stacking and strong hydrogen-bonding interactions: a conformation study toward carbon nanotubes (CNTs) dispersion. Macromolecules 49(15):5374–5385CrossRef
11.
go back to reference Starý Z, Krückel J, Weck C, Schubert DW (2013) Rheology and conductivity of carbon fibre composites with defined fibre lengths. Compos Sci Technol 85:58–64CrossRef Starý Z, Krückel J, Weck C, Schubert DW (2013) Rheology and conductivity of carbon fibre composites with defined fibre lengths. Compos Sci Technol 85:58–64CrossRef
12.
go back to reference Gao C, Zhang SM, Wang F, Wen B, Han CC, Ding YF, Yang MS (2014) Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties. ACS Appl Mater Inter 6(15):12252–12260CrossRef Gao C, Zhang SM, Wang F, Wen B, Han CC, Ding YF, Yang MS (2014) Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties. ACS Appl Mater Inter 6(15):12252–12260CrossRef
13.
go back to reference Chen JW, Cui XH, Sui KY, Zhu YT, Jiang W (2017) Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos Sci Technol 140:99–105CrossRef Chen JW, Cui XH, Sui KY, Zhu YT, Jiang W (2017) Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos Sci Technol 140:99–105CrossRef
14.
go back to reference Göldel A, Kasaliwal G, Pötschke P (2009) Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly (styrene-acrylonitrile). Macromol Rapid Comm 30(6):423–429CrossRef Göldel A, Kasaliwal G, Pötschke P (2009) Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly (styrene-acrylonitrile). Macromol Rapid Comm 30(6):423–429CrossRef
15.
go back to reference Wu XM, Qi SH, He J, Chen B, Duan GC (2010) Synthesis of high conductivity Polyaniline/Ag/graphite nanosheet composites via ultrasonic technique. J Polym Res 17(5):751–757CrossRef Wu XM, Qi SH, He J, Chen B, Duan GC (2010) Synthesis of high conductivity Polyaniline/Ag/graphite nanosheet composites via ultrasonic technique. J Polym Res 17(5):751–757CrossRef
16.
go back to reference Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25(2):265–271CrossRef Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25(2):265–271CrossRef
17.
go back to reference Gubbels F, Jérôme R, Teyssie P, Vanlathem E, Deltour R, Calderone A, Parente V, Brédas JL (1994) Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites. Macromolecules 27(7):1972–1974CrossRef Gubbels F, Jérôme R, Teyssie P, Vanlathem E, Deltour R, Calderone A, Parente V, Brédas JL (1994) Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites. Macromolecules 27(7):1972–1974CrossRef
18.
go back to reference Foulger SH (1999) Reduced percolation thresholds of immiscible conductive blends. J Polym Sci: Pol Phys 37(15):1899–1910CrossRef Foulger SH (1999) Reduced percolation thresholds of immiscible conductive blends. J Polym Sci: Pol Phys 37(15):1899–1910CrossRef
19.
go back to reference Xu ZB, Zhao C, Gu AJ, Fang ZP, Tong LF (2007) Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black. J Appl Polym Sci 106(3):2008–2017CrossRef Xu ZB, Zhao C, Gu AJ, Fang ZP, Tong LF (2007) Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black. J Appl Polym Sci 106(3):2008–2017CrossRef
20.
go back to reference Cheah K, Forsyth M, Simon GP (2000) Processing and morphological development of carbon black filled conducting blends using a binary host of poly (styrene co-acrylonitrile) and poly (styrene). J Polym Sci: Pol Phys 38(23):3106–3119CrossRef Cheah K, Forsyth M, Simon GP (2000) Processing and morphological development of carbon black filled conducting blends using a binary host of poly (styrene co-acrylonitrile) and poly (styrene). J Polym Sci: Pol Phys 38(23):3106–3119CrossRef
21.
go back to reference Calberg C, Blacher S, Gubbels F, Brouers F, Deltour R, Jérôme R (1999) Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends. J Phys D Appl Phys 32(13):1517–1525CrossRef Calberg C, Blacher S, Gubbels F, Brouers F, Deltour R, Jérôme R (1999) Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends. J Phys D Appl Phys 32(13):1517–1525CrossRef
22.
go back to reference Mamunya Y, Levchenko V, Boiteux G, Seytre G, Zanoaga M, Tanasa F, Lebedev E (2016) Controlling morphology, electrical, and mechanical properties of polymer blends by heterogeneous distribution of carbon nanotubes. Polym Compos 37(8):2467–2477CrossRef Mamunya Y, Levchenko V, Boiteux G, Seytre G, Zanoaga M, Tanasa F, Lebedev E (2016) Controlling morphology, electrical, and mechanical properties of polymer blends by heterogeneous distribution of carbon nanotubes. Polym Compos 37(8):2467–2477CrossRef
23.
go back to reference Nasti G, Gentile G, Cerruti P, Carfagna C, Ambrogi V (2016) Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends. Polymer 99:193–203CrossRef Nasti G, Gentile G, Cerruti P, Carfagna C, Ambrogi V (2016) Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends. Polymer 99:193–203CrossRef
24.
go back to reference Chen Y, Yang Q, Huang YJ, Liao X, Niu YH (2015) Influence of phase coarsening and filler agglomeration on electrical and rheological properties of MWNTs-filled PP/PMMA composites under annealing. Polymer 79:159–170CrossRef Chen Y, Yang Q, Huang YJ, Liao X, Niu YH (2015) Influence of phase coarsening and filler agglomeration on electrical and rheological properties of MWNTs-filled PP/PMMA composites under annealing. Polymer 79:159–170CrossRef
25.
go back to reference Dil EJ, Favis BD (2015) Localization of micro and nano-silica particles in a high interfacial tension poly (lactic acid)/low density polyethylene system. Polymer 77:156–166CrossRef Dil EJ, Favis BD (2015) Localization of micro and nano-silica particles in a high interfacial tension poly (lactic acid)/low density polyethylene system. Polymer 77:156–166CrossRef
26.
go back to reference Kim JH, Park DS, Kim CK (2000) Characterization of the interaction energies for polystyrene blends with various methacrylate polymers. J Polym Sci: Pol Phys 38(20):2666–2677CrossRef Kim JH, Park DS, Kim CK (2000) Characterization of the interaction energies for polystyrene blends with various methacrylate polymers. J Polym Sci: Pol Phys 38(20):2666–2677CrossRef
27.
go back to reference Schubert DW, Stamm M, Müller AHE (1999) Neutron reflectometry studies on the interfacial width between polystyrene and various poly (alkylmethacrylates). Polym Eng Sci 39(8):1501–1507CrossRef Schubert DW, Stamm M, Müller AHE (1999) Neutron reflectometry studies on the interfacial width between polystyrene and various poly (alkylmethacrylates). Polym Eng Sci 39(8):1501–1507CrossRef
28.
go back to reference Voulgaris D, Petridis D (2002) Emulsifying effect of dimethyldioctadecylammonium-hectorite in polystyrene/poly (ethyl methacrylate) blends. Polymer 43(8):2213–2218CrossRef Voulgaris D, Petridis D (2002) Emulsifying effect of dimethyldioctadecylammonium-hectorite in polystyrene/poly (ethyl methacrylate) blends. Polymer 43(8):2213–2218CrossRef
29.
go back to reference Mohamed MG, Hsu KC, Hong JL, Kuo SW (2016) Unexpected fluorescence from maleimide-containing polyhedral oligomeric silsesquioxanes: nanoparticle and sequence distribution analyses of polystyrene-based alternating copolymers. Polym Chem 7(1):135–145CrossRef Mohamed MG, Hsu KC, Hong JL, Kuo SW (2016) Unexpected fluorescence from maleimide-containing polyhedral oligomeric silsesquioxanes: nanoparticle and sequence distribution analyses of polystyrene-based alternating copolymers. Polym Chem 7(1):135–145CrossRef
30.
go back to reference Taherian R (2016) Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos Sci Technol 123:17–31CrossRef Taherian R (2016) Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos Sci Technol 123:17–31CrossRef
31.
go back to reference Radzuan NAM, Sulong AB, Sahari J (2017) A review of electrical conductivity models for conductive polymer composite. Int J Hydrogen Energ 42(14):9262–9273CrossRef Radzuan NAM, Sulong AB, Sahari J (2017) A review of electrical conductivity models for conductive polymer composite. Int J Hydrogen Energ 42(14):9262–9273CrossRef
32.
go back to reference McLachlan DS, Blaszkiewicz M, Newnham RE (1990) Electrical resistivity of composites. J A Ceram Soc 73(8):2187–2203CrossRef McLachlan DS, Blaszkiewicz M, Newnham RE (1990) Electrical resistivity of composites. J A Ceram Soc 73(8):2187–2203CrossRef
33.
go back to reference Sahimi M (1994) Applications of percolation theory. CRC Press, Boca Raton, FL, USACrossRef Sahimi M (1994) Applications of percolation theory. CRC Press, Boca Raton, FL, USACrossRef
34.
go back to reference Xu HG, Qu MC, Schubert DW (2019) Conductivity of poly (methyl methacrylate) composite films filled with ultra-high aspect ratio carbon fibers. Compos Sci Technol 181:107690CrossRef Xu HG, Qu MC, Schubert DW (2019) Conductivity of poly (methyl methacrylate) composite films filled with ultra-high aspect ratio carbon fibers. Compos Sci Technol 181:107690CrossRef
35.
go back to reference Wu, S. Polymer Interface and adhesion; Marcel Dekker New York, 1982 Wu, S. Polymer Interface and adhesion; Marcel Dekker New York, 1982
36.
go back to reference Deng H, Lin L, Ji MZ, Zhang SM, Yang MB, Fu Q (2014) Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog Polym Sci 39(4):627–655CrossRef Deng H, Lin L, Ji MZ, Zhang SM, Yang MB, Fu Q (2014) Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog Polym Sci 39(4):627–655CrossRef
37.
go back to reference Baudouin AC, Devaux J, Bailly C (2010) Localization of carbon nanotubes at the interface in blends of polyamide and ethylene–acrylate copolymer. Polymer 51(6):1341–1354CrossRef Baudouin AC, Devaux J, Bailly C (2010) Localization of carbon nanotubes at the interface in blends of polyamide and ethylene–acrylate copolymer. Polymer 51(6):1341–1354CrossRef
39.
go back to reference Barber AH, Cohen SR, Wagner HD (2004) Static and dynamic wetting measurements of single carbon nanotubes. Phys Rev Lett 92(18):186103PubMedCrossRef Barber AH, Cohen SR, Wagner HD (2004) Static and dynamic wetting measurements of single carbon nanotubes. Phys Rev Lett 92(18):186103PubMedCrossRef
40.
go back to reference Xu HG, Qu MC, Pan YM, Schubert DW (2020) Conductivity of poly(methyl methacrylate)/polystyrene/carbon black and poly(ethyl methacrylate)/polystyrene/carbon black ternary composite films. Chinese J Polym Sci 38(3):288–297CrossRef Xu HG, Qu MC, Pan YM, Schubert DW (2020) Conductivity of poly(methyl methacrylate)/polystyrene/carbon black and poly(ethyl methacrylate)/polystyrene/carbon black ternary composite films. Chinese J Polym Sci 38(3):288–297CrossRef
41.
go back to reference Harrats C, Groeninckx G, Thomas S (2005) Micro-and nanostructured multiphase polymer blend systems: phase morphology and interfaces. CRC press Harrats C, Groeninckx G, Thomas S (2005) Micro-and nanostructured multiphase polymer blend systems: phase morphology and interfaces. CRC press
Metadata
Title
Electrical conductivity of polystyrene/poly(n-alkyl methacrylate)s / carbon nanotube ternary composite casting films
Authors
Huagen Xu
Dirk W. Schubert
Publication date
01-06-2020
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 6/2020
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-020-02141-1

Other articles of this Issue 6/2020

Journal of Polymer Research 6/2020 Go to the issue

Premium Partners