Skip to main content
Top
Published in: Wireless Personal Communications 2/2017

13-05-2017

Electrically Small Microstrip Patch Antenna Loaded with Spiral Resonator for Wireless Applications

Authors: Rajni Rajni, Anupma Marwaha

Published in: Wireless Personal Communications | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper focuses on a new dual turn spiral resonator (DTSR) loaded electrically small microstrip patch antenna. The proposed DTSR loaded antenna is mounted on Rogers RT/Duroid 5880 tm substrate and numerically analyzed with electromagnetic solver. The resonant frequency of the antenna gets lowered with improved magnetic permeability of dielectric materials through metamaterial loading. The DTSR loaded antenna resonates at 14.76 GHz compared to unloaded simple microstrip patch antenna resonating at 27.44 GHz. The proposed antenna also satisfies the condition of Chu limit for being electrically small antenna with appreciable return loss and gain of 7.17 dB and fractional bandwidth is 7.96%. This antenna can be used for satellite communications. The full wave simulated resonant frequency of DTSR is compared with frequency derived from equivalent circuit of model. It is observed that the analytically calculated resonant frequency is in close agreement with full wave numerically analyzed frequency. The negative permeability of the DTSR is also plotted to depict the metamaterial behavior.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics-USPEKHI, 10(4), 509–514.CrossRef Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics-USPEKHI, 10(4), 509–514.CrossRef
2.
go back to reference Engheta, N., & Ziolkowski, R. W. (2005). A positive future for double-negative metamaterial. IEEE Transactions on Microwave Theory and Techniques, 53(4), 1535–1556.CrossRef Engheta, N., & Ziolkowski, R. W. (2005). A positive future for double-negative metamaterial. IEEE Transactions on Microwave Theory and Techniques, 53(4), 1535–1556.CrossRef
3.
go back to reference Buell, K., Mosallaei, H., & Sarabandi, K. (2006). A substrate for small patch antennas providing tunable miniaturization factors. IEEE Transactions of Microwave Theory and Techniques, 54(1), 135–146.CrossRef Buell, K., Mosallaei, H., & Sarabandi, K. (2006). A substrate for small patch antennas providing tunable miniaturization factors. IEEE Transactions of Microwave Theory and Techniques, 54(1), 135–146.CrossRef
4.
go back to reference Engheta, N., & Ziolkowski, R. W. (2006). Metamaterial, physics and engineering explorations. New York: Wiley. Engheta, N., & Ziolkowski, R. W. (2006). Metamaterial, physics and engineering explorations. New York: Wiley.
5.
go back to reference Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N., & Vincent, P. (2002). A metamaterial for directive emission. Physics Review Letters, 89(21), 213902.CrossRef Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N., & Vincent, P. (2002). A metamaterial for directive emission. Physics Review Letters, 89(21), 213902.CrossRef
6.
go back to reference Majid, H. A., Rahim, M. K. A., & Masri, T. (2009). Microstrip antenna’s gain enhancement using left-handed metamaterial structure. Progress in Electromagnetics Research, 8, 235–247.CrossRef Majid, H. A., Rahim, M. K. A., & Masri, T. (2009). Microstrip antenna’s gain enhancement using left-handed metamaterial structure. Progress in Electromagnetics Research, 8, 235–247.CrossRef
7.
go back to reference Lim, S., Caloz, C., & Itoh, T. (2005). Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth. IEEE Transactions on Microwave Theory and Techniques, 53(1), 161–173.CrossRef Lim, S., Caloz, C., & Itoh, T. (2005). Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth. IEEE Transactions on Microwave Theory and Techniques, 53(1), 161–173.CrossRef
8.
go back to reference Wheeler, H. A. (1947). Fundamental limitations of small antennas. IRE Proceedings, 35(12), 1479–1484.CrossRef Wheeler, H. A. (1947). Fundamental limitations of small antennas. IRE Proceedings, 35(12), 1479–1484.CrossRef
9.
go back to reference Chu, L. J. (1948). Physical limitations on Omni-directional antennas. Journal of Applied Physics, 19(12), 1163–1175.CrossRef Chu, L. J. (1948). Physical limitations on Omni-directional antennas. Journal of Applied Physics, 19(12), 1163–1175.CrossRef
10.
go back to reference Ziolkowski, R. W., & Erentok, A. (2006). Metamaterial based efficient electrically small antennas. IEEE Transactions on Antennas and Propagation, 54(7), 2113–2130.CrossRef Ziolkowski, R. W., & Erentok, A. (2006). Metamaterial based efficient electrically small antennas. IEEE Transactions on Antennas and Propagation, 54(7), 2113–2130.CrossRef
11.
go back to reference Ziolkowski, R. W., & Erentok, A. (2007). At and below the Chu limit: passive and active broad bandwidth metamaterial based electrically small antennas. IET Microwaves, Antennas and Propagation, 1(1), 116–128.CrossRef Ziolkowski, R. W., & Erentok, A. (2007). At and below the Chu limit: passive and active broad bandwidth metamaterial based electrically small antennas. IET Microwaves, Antennas and Propagation, 1(1), 116–128.CrossRef
12.
go back to reference Shelby, R. A., Smith, D. R., & Schultz, S. (2001). Experimental verification of a negative index of refraction. Science Magazine, 292, 77–79. Shelby, R. A., Smith, D. R., & Schultz, S. (2001). Experimental verification of a negative index of refraction. Science Magazine, 292, 77–79.
13.
go back to reference Joshi, J. G., Pattnaik, S. S., Devi, S., & Lohokare, M. R. (2010). Electrically small electrically small patch antenna loaded with metamaterial. IETE Journal of Research, 56(6), 373–379.CrossRef Joshi, J. G., Pattnaik, S. S., Devi, S., & Lohokare, M. R. (2010). Electrically small electrically small patch antenna loaded with metamaterial. IETE Journal of Research, 56(6), 373–379.CrossRef
14.
go back to reference Wu, B.-I., Wang, W., Pacheco, J., Chen, X., Grzegorczyk, T. M., & Kong, J. A. (2005). A study of using metamaterials as antenna substrate to enhance gain. Progress in Electromagnetic Research, 51, 295–328.CrossRef Wu, B.-I., Wang, W., Pacheco, J., Chen, X., Grzegorczyk, T. M., & Kong, J. A. (2005). A study of using metamaterials as antenna substrate to enhance gain. Progress in Electromagnetic Research, 51, 295–328.CrossRef
15.
go back to reference Naqui, J., Coromina, J., Karami-Horestani, A., Fumeaux, C., & Martín, F. (2015). Angular displacement and velocity sensors based on coplanar waveguides loaded with S-shaped split ring resonators. Sensors, 15(5), 9628–9650.CrossRef Naqui, J., Coromina, J., Karami-Horestani, A., Fumeaux, C., & Martín, F. (2015). Angular displacement and velocity sensors based on coplanar waveguides loaded with S-shaped split ring resonators. Sensors, 15(5), 9628–9650.CrossRef
16.
go back to reference Sabah, C. (2010). Tunable metamaterial design composed of triangular split ring resonator and wire strip for S and C microwave bands. Progress in Electromagnetics Research B, 22, 341–357.CrossRef Sabah, C. (2010). Tunable metamaterial design composed of triangular split ring resonator and wire strip for S and C microwave bands. Progress in Electromagnetics Research B, 22, 341–357.CrossRef
17.
go back to reference Siddiqui, J. Y., Saha, C., & Antar, Y. M. M. (2014). Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics. IEEE Transactions on Antennas and Propagation, 62(8), 4015–4420.CrossRef Siddiqui, J. Y., Saha, C., & Antar, Y. M. M. (2014). Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics. IEEE Transactions on Antennas and Propagation, 62(8), 4015–4420.CrossRef
18.
go back to reference Rajni, R., & Marwaha, A. (2011). Analysis of magnetic resonance in metamaterial structure. In From excerpt from the proceedings of the 2011 COMSOL Conference, Bangalore. Rajni, R., & Marwaha, A. (2011). Analysis of magnetic resonance in metamaterial structure. In From excerpt from the proceedings of the 2011 COMSOL Conference, Bangalore.
19.
go back to reference Rajni, R., & Marwaha, A. (2015). Magnetic resonance in spiral resonators. International Journal of Applied Engineering Research, 10(13), 33291–33295. Rajni, R., & Marwaha, A. (2015). Magnetic resonance in spiral resonators. International Journal of Applied Engineering Research, 10(13), 33291–33295.
20.
go back to reference Rajni, R., & Marwaha, A. (2015). Resonance characteristics and effective parameters of new left hand metamaterial. TELKOMNIKA Indonesian Journal of Electrical Engineering, 15(3), 497–503. Rajni, R., & Marwaha, A. (2015). Resonance characteristics and effective parameters of new left hand metamaterial. TELKOMNIKA Indonesian Journal of Electrical Engineering, 15(3), 497–503.
21.
go back to reference Singh, R., Al-Naib, I. A. I., Martin, K., & Zhang, W. (2010). Asymmetric planar terahertz metamaterials. Optics Express, 18(12), 13044–13050.CrossRef Singh, R., Al-Naib, I. A. I., Martin, K., & Zhang, W. (2010). Asymmetric planar terahertz metamaterials. Optics Express, 18(12), 13044–13050.CrossRef
22.
go back to reference Bilotti, F., Toscan, A., & Vegni, L. (2007). Design of spiral and multiple split ring resonators for the realization of miniaturized metamaterial samples. IEEE Transactions on Antennas and Propagation, 55(8), 2258–2267.CrossRef Bilotti, F., Toscan, A., & Vegni, L. (2007). Design of spiral and multiple split ring resonators for the realization of miniaturized metamaterial samples. IEEE Transactions on Antennas and Propagation, 55(8), 2258–2267.CrossRef
23.
go back to reference Bilotti, F., Toscan, A., Vegni, L., Aydin, K., Alici, K. B., & Ozbay, E. (2007). Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions. IEEE Transactions on Microwave Theory and Techniques, 55(12), 2865–2873.CrossRef Bilotti, F., Toscan, A., Vegni, L., Aydin, K., Alici, K. B., & Ozbay, E. (2007). Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions. IEEE Transactions on Microwave Theory and Techniques, 55(12), 2865–2873.CrossRef
24.
go back to reference Ellstein, D., Wang, B., & Teo, K. H. (2012). Accurate Models for Spiral Resonators. In Microwave conference (EuMC), 42nd European (pp. 787–790). Ellstein, D., Wang, B., & Teo, K. H. (2012). Accurate Models for Spiral Resonators. In Microwave conference (EuMC), 42nd European (pp. 787–790).
25.
go back to reference McLean, J. S. (1996). A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Transactions on Antennas and Propagation, 44(5), 672–676.CrossRef McLean, J. S. (1996). A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Transactions on Antennas and Propagation, 44(5), 672–676.CrossRef
26.
go back to reference Rajni, R., & Marwaha, A. (2016). CSC-SR structure loaded electrically small planar antenna. Applied Computational Electromagnetic Society Journal, 31(5), 591–598. Rajni, R., & Marwaha, A. (2016). CSC-SR structure loaded electrically small planar antenna. Applied Computational Electromagnetic Society Journal, 31(5), 591–598.
Metadata
Title
Electrically Small Microstrip Patch Antenna Loaded with Spiral Resonator for Wireless Applications
Authors
Rajni Rajni
Anupma Marwaha
Publication date
13-05-2017
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2017
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4315-z

Other articles of this Issue 2/2017

Wireless Personal Communications 2/2017 Go to the issue