Skip to main content
Top

2019 | OriginalPaper | Chapter

7. Electrochemical and Photoelectrochemical Transformations of Aqueous CO2

Authors : Aubrey R. Paris, Jessica J. Frick, Danrui Ni, Michael R. Smith, Andrew B. Bocarsly

Published in: An Economy Based on Carbon Dioxide and Water

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter covers the electrochemical and photoelectrochemical conversion of CO2 in aqueous media. It is divided into sections that consider heterogeneous electrocatalysts on metal electrodes, homogeneous catalysts interacting with metal surfaces, light-driven semiconductor electrodes, and hybrid systems that combine heterogeneous interfaces with surface-confined molecular components.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Biello D (2010) Reverse combustion: can CO2 be turned back into fuel? (Video). Sci Am, 23 Sept 2010 Biello D (2010) Reverse combustion: can CO2 be turned back into fuel? (Video). Sci Am, 23 Sept 2010
2.
go back to reference White JL, Baruch MF, Pander JE III, Hu Y, Fortmeyer IC, Park JE, Zhang T, Liao K, Gu J, Yan Y et al (2015) Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev 115(23):12888–12935PubMed White JL, Baruch MF, Pander JE III, Hu Y, Fortmeyer IC, Park JE, Zhang T, Liao K, Gu J, Yan Y et al (2015) Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev 115(23):12888–12935PubMed
3.
go back to reference Gu J, Wuttig A, Krizan JW, Hu Y, Detweiler ZM, Cava RJ, Bocarsly AB (2013) Mg-doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. J Phys Chem C 117(24):12415–12422 Gu J, Wuttig A, Krizan JW, Hu Y, Detweiler ZM, Cava RJ, Bocarsly AB (2013) Mg-doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. J Phys Chem C 117(24):12415–12422
4.
go back to reference Gu J, Yan Y, Krizan JW, Gibson QD, Detweiler ZM, Cava RJ, Bocarsly AB (2014) P-type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. J Am Chem Soc 136(3):830–833PubMed Gu J, Yan Y, Krizan JW, Gibson QD, Detweiler ZM, Cava RJ, Bocarsly AB (2014) P-type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. J Am Chem Soc 136(3):830–833PubMed
5.
go back to reference Detweiler ZM, White JL, Bernasek SL, Bocarsly AB (2014) Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte. Langmuir 30(25):7593–7600PubMed Detweiler ZM, White JL, Bernasek SL, Bocarsly AB (2014) Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte. Langmuir 30(25):7593–7600PubMed
6.
go back to reference White JL, Bocarsly AB (2016) Enhanced carbon dioxide reduction activity on indium-based nanoparticles. J Electrochem Soc 163(6):H410–H416 White JL, Bocarsly AB (2016) Enhanced carbon dioxide reduction activity on indium-based nanoparticles. J Electrochem Soc 163(6):H410–H416
7.
go back to reference Hawecker J, Lehn J-M, Ziessel R (1984) Electrocatalytic reduction of carbon dioxide mediated by Re(Bipy)(CO)3Cl (Bipy = 2,2’-Bipyridine). J Chem Soc Chem Commun, 328–330 Hawecker J, Lehn J-M, Ziessel R (1984) Electrocatalytic reduction of carbon dioxide mediated by Re(Bipy)(CO)3Cl (Bipy = 2,2’-Bipyridine). J Chem Soc Chem Commun, 328–330
8.
go back to reference Bourrez M, Molton F, Chardon-Noblat S, Deronzier A (2011) [Mn(Bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angewandte Chemie Int Edn 50(42):9903–9906 Bourrez M, Molton F, Chardon-Noblat S, Deronzier A (2011) [Mn(Bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angewandte Chemie Int Edn 50(42):9903–9906
9.
go back to reference Hori Y, Murata A, Takahashi R, Suzuki S (1988) Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. J Chem Soc, Chem Commun 1:17–19 Hori Y, Murata A, Takahashi R, Suzuki S (1988) Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. J Chem Soc, Chem Commun 1:17–19
10.
go back to reference Hori Y, Murata A, Takahashi R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 85(8):2309–2326 Hori Y, Murata A, Takahashi R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 85(8):2309–2326
11.
go back to reference Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39(11–12):1833–1839 Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39(11–12):1833–1839
12.
go back to reference Ooka H, Figueiredo MC, Koper MTM (2017) Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33(37):9307–9313PubMedPubMedCentral Ooka H, Figueiredo MC, Koper MTM (2017) Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33(37):9307–9313PubMedPubMedCentral
13.
go back to reference Hori Y, Takahashi I, Koga O, Hoshi N (2002) Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B 106(1):15–17 Hori Y, Takahashi I, Koga O, Hoshi N (2002) Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B 106(1):15–17
14.
go back to reference Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New Insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5(5):7050 Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New Insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5(5):7050
15.
go back to reference Manthiram K, Beberwyck BJ, Alivisatos AP (2014) Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc 136(38):13319–13325PubMed Manthiram K, Beberwyck BJ, Alivisatos AP (2014) Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc 136(38):13319–13325PubMed
16.
go back to reference Dutta A, Rahaman M, Luedi NC, Mohos M, Broekmann P (2016) Morphology matters: tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal 6(6):3804–3814 Dutta A, Rahaman M, Luedi NC, Mohos M, Broekmann P (2016) Morphology matters: tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal 6(6):3804–3814
17.
go back to reference Ren D, Deng Y, Handoko AD, Chen CS, Malkhandi S, Yeo BS (2015) Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal 5(5):2814–2821 Ren D, Deng Y, Handoko AD, Chen CS, Malkhandi S, Yeo BS (2015) Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal 5(5):2814–2821
18.
go back to reference Kas R, Kortlever R, Milbrat A, Koper MTM, Mul G, Baltrusaitis J (2014) Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys Chem Chem Phys 16(24):12194–12201PubMed Kas R, Kortlever R, Milbrat A, Koper MTM, Mul G, Baltrusaitis J (2014) Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys Chem Chem Phys 16(24):12194–12201PubMed
19.
go back to reference Sen S, Liu D, Palmore GTR (2014) Electrochemical reduction of CO2 at copper nanofoams. ACS Catal 4(9):3091–3095 Sen S, Liu D, Palmore GTR (2014) Electrochemical reduction of CO2 at copper nanofoams. ACS Catal 4(9):3091–3095
20.
go back to reference Loiudice A, Lobaccaro P, Kamali EA, Thao T, Huang BH, Ager JW, Buonsanti R (2016) Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angewandte Chemie Int Edn 55(19):5789–5792 Loiudice A, Lobaccaro P, Kamali EA, Thao T, Huang BH, Ager JW, Buonsanti R (2016) Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angewandte Chemie Int Edn 55(19):5789–5792
21.
go back to reference Reske R, Mistry H, Behafarid F, Roldan Cuenya B, Strasser P (2014) Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc 136(19):6978–6986PubMed Reske R, Mistry H, Behafarid F, Roldan Cuenya B, Strasser P (2014) Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc 136(19):6978–6986PubMed
22.
go back to reference Roberts FS, Kuhl KP, Nilsson A (2015) High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew Chem 127(17):5268–5271 Roberts FS, Kuhl KP, Nilsson A (2015) High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew Chem 127(17):5268–5271
23.
go back to reference Li Y, Cui F, Ross MB, Kim D, Sun Y, Yang P (2017) Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett 17(2):1312–1317PubMed Li Y, Cui F, Ross MB, Kim D, Sun Y, Yang P (2017) Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett 17(2):1312–1317PubMed
24.
go back to reference Verdaguer-Casadevall A, Li CW, Johansson TP, Scott SB, McKeown JT, Kumar M, Stephens IEL, Kanan MW, Chorkendorff I (2015) Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J Am Chem Soc 137(31):9808–9811PubMed Verdaguer-Casadevall A, Li CW, Johansson TP, Scott SB, McKeown JT, Kumar M, Stephens IEL, Kanan MW, Chorkendorff I (2015) Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J Am Chem Soc 137(31):9808–9811PubMed
25.
go back to reference Ma M, Djanashvili K, Smith WA (2016) Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angewandte Chemie Int Edn 55(23):6680–6684 Ma M, Djanashvili K, Smith WA (2016) Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angewandte Chemie Int Edn 55(23):6680–6684
26.
go back to reference Huang Y, Handoko AD, Hirunsit P, Yeo BS (2017) Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal 7(3):1749–1756 Huang Y, Handoko AD, Hirunsit P, Yeo BS (2017) Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal 7(3):1749–1756
27.
go back to reference Raciti D, Livi KJ, Wang C (2015) Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett 15(10):6829–6835PubMed Raciti D, Livi KJ, Wang C (2015) Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett 15(10):6829–6835PubMed
28.
go back to reference Kas R, Kortlever R, Yilmaz H, Koper MTM, Mul G (2015) Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem 2(3):354–358 Kas R, Kortlever R, Yilmaz H, Koper MTM, Mul G (2015) Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem 2(3):354–358
29.
go back to reference Varela AS, Kroschel M, Reier T, Strasser P (2016) Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal Today 260:8–13 Varela AS, Kroschel M, Reier T, Strasser P (2016) Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal Today 260:8–13
30.
go back to reference Varela AS, Ju W, Reier T, Strasser P (2016) Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal 6(4):2136–2144 Varela AS, Ju W, Reier T, Strasser P (2016) Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal 6(4):2136–2144
31.
go back to reference Resasco J, Lum Y, Clark E, Zeledon JZ, Bell AT (2018) Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5(7):1064–1072 Resasco J, Lum Y, Clark E, Zeledon JZ, Bell AT (2018) Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5(7):1064–1072
32.
go back to reference Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594(1):1–19 Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594(1):1–19
33.
go back to reference Lee S, Kim D, Lee J (2015) Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O-Cu catalyst. Angew Chem 127(49):14914–14918 Lee S, Kim D, Lee J (2015) Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O-Cu catalyst. Angew Chem 127(49):14914–14918
34.
go back to reference Lum Y, Yue B, Lobaccaro P, Bell AT, Ager JW (2017) Optimizing C-C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J Phys Chem C 121(26):14191–14203 Lum Y, Yue B, Lobaccaro P, Bell AT, Ager JW (2017) Optimizing C-C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J Phys Chem C 121(26):14191–14203
35.
go back to reference De Luna P, Quintero-Bermudez R, Dinh C-T, Ross MB, Bushuyev OS, Todorović P, Regier T, Kelley SO, Yang P, Sargent EH (2018) Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat Catal 1(2):103–110 De Luna P, Quintero-Bermudez R, Dinh C-T, Ross MB, Bushuyev OS, Todorović P, Regier T, Kelley SO, Yang P, Sargent EH (2018) Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat Catal 1(2):103–110
36.
go back to reference Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. In: Gamboa-Aldeco ME (ed) Modern aspects of electrochemistry. Springer, New York, vol 42, pp 89–189 Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. In: Gamboa-Aldeco ME (ed) Modern aspects of electrochemistry. Springer, New York, vol 42, pp 89–189
37.
go back to reference Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136(40):14107–14113PubMed Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136(40):14107–14113PubMed
38.
go back to reference Singh MR, Kwon Y, Lum Y, Ager JW, Bell AT (2016) Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J Am Chem Soc 138(39):13006–13012PubMed Singh MR, Kwon Y, Lum Y, Ager JW, Bell AT (2016) Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J Am Chem Soc 138(39):13006–13012PubMed
39.
go back to reference Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ (2015) Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J Am Chem Soc 137(43):13844–13850PubMed Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ (2015) Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J Am Chem Soc 137(43):13844–13850PubMed
40.
go back to reference Ma M, Trześniewski BJ, Xie J, Smith WA (2016) Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew Chem 128(33):9900–9904 Ma M, Trześniewski BJ, Xie J, Smith WA (2016) Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew Chem 128(33):9900–9904
41.
go back to reference Peng X, Karakalos SG, Mustain WE (2018) Preferentially oriented Ag nanocrystals with extremely high activity and faradaic efficiency for CO2 electrochemical reduction to CO. ACS Appl Mater Interfaces 10(2):1734–1742PubMed Peng X, Karakalos SG, Mustain WE (2018) Preferentially oriented Ag nanocrystals with extremely high activity and faradaic efficiency for CO2 electrochemical reduction to CO. ACS Appl Mater Interfaces 10(2):1734–1742PubMed
42.
go back to reference Liu S, Tao H, Zeng L, Liu Q, Xu Z, Liu Q, Luo J-L (2017) Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J Am Chem Soc 139(6):2160–2163PubMed Liu S, Tao H, Zeng L, Liu Q, Xu Z, Liu Q, Luo J-L (2017) Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J Am Chem Soc 139(6):2160–2163PubMed
43.
go back to reference Rosen J, Hutchings GS, Lu Q, Rivera S, Zhou Y, Vlachos DG, Jiao F (2015) Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal 5(7):4293–4299 Rosen J, Hutchings GS, Lu Q, Rivera S, Zhou Y, Vlachos DG, Jiao F (2015) Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal 5(7):4293–4299
44.
go back to reference Feng X, Jiang K, Fan S, Kanan MW (2015) Grain-boundary-dependent CO2 electroreduction activity. J Am Chem Soc 137(14):4606–4609PubMed Feng X, Jiang K, Fan S, Kanan MW (2015) Grain-boundary-dependent CO2 electroreduction activity. J Am Chem Soc 137(14):4606–4609PubMed
45.
go back to reference Zhu W, Zhang Y-J, Zhang H, Lv H, Li Q, Michalsky R, Peterson AA, Sun S (2014) Active and selective conversion of CO2 to CO on ultrathin au nanowires. J Am Chem Soc 136(46):16132–16135PubMed Zhu W, Zhang Y-J, Zhang H, Lv H, Li Q, Michalsky R, Peterson AA, Sun S (2014) Active and selective conversion of CO2 to CO on ultrathin au nanowires. J Am Chem Soc 136(46):16132–16135PubMed
46.
go back to reference Mistry H, Reske R, Zeng Z, Zhao Z-J, Greeley J, Strasser P, Cuenya BR (2014) Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc 136(47):16473–16476PubMed Mistry H, Reske R, Zeng Z, Zhao Z-J, Greeley J, Strasser P, Cuenya BR (2014) Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc 136(47):16473–16476PubMed
47.
go back to reference Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137(13):4288–4291PubMed Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137(13):4288–4291PubMed
48.
go back to reference Rosen J, Hutchings GS, Lu Q, Forest RV, Moore A, Jiao F (2015) Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction. ACS Catal 5(8):4586–4591 Rosen J, Hutchings GS, Lu Q, Forest RV, Moore A, Jiao F (2015) Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction. ACS Catal 5(8):4586–4591
49.
go back to reference Gao S, Jiao X, Sun Z, Zhang W, Sun Y, Wang C, Hu Q, Zu X, Yang F, Yang S et al (2016) Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angewandte Chemie Int Edn 55(2):698–702 Gao S, Jiao X, Sun Z, Zhang W, Sun Y, Wang C, Hu Q, Zu X, Yang F, Yang S et al (2016) Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angewandte Chemie Int Edn 55(2):698–702
50.
go back to reference Baruch MF, Pander JE, White JL, Bocarsly AB (2015) Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal 5(5):3148–3156 Baruch MF, Pander JE, White JL, Bocarsly AB (2015) Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal 5(5):3148–3156
51.
go back to reference Detweiler ZM, Wulfsberg SM, Frith MG, Bocarsly AB, Bernasek SL (2016) The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants. Surf Sci 648:188–195 Detweiler ZM, Wulfsberg SM, Frith MG, Bocarsly AB, Bernasek SL (2016) The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants. Surf Sci 648:188–195
52.
go back to reference Pander JE, Baruch MF, Bocarsly AB (2016) Probing the mechanism of aqueous CO2 reduction on post-transition-metal electrodes using ATR-IR spectroelectrochemistry. ACS Catal 6(11):7824–7833 Pander JE, Baruch MF, Bocarsly AB (2016) Probing the mechanism of aqueous CO2 reduction on post-transition-metal electrodes using ATR-IR spectroelectrochemistry. ACS Catal 6(11):7824–7833
53.
go back to reference Li F, Chen L, Knowles GP, MacFarlane DR, Zhang J (2017) Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angewandte Chemie Int Edn 56(2):505–509 Li F, Chen L, Knowles GP, MacFarlane DR, Zhang J (2017) Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angewandte Chemie Int Edn 56(2):505–509
54.
go back to reference Kumar B, Atla V, Brian JP, Kumari S, Nguyen TQ, Sunkara M, Spurgeon JM (2017) Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angewandte Chemie Int Edn 56(13):3645–3649 Kumar B, Atla V, Brian JP, Kumari S, Nguyen TQ, Sunkara M, Spurgeon JM (2017) Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angewandte Chemie Int Edn 56(13):3645–3649
55.
go back to reference Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136(5):1734–1737PubMed Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136(5):1734–1737PubMed
56.
go back to reference Li Q, Fu J, Zhu W, Chen Z, Shen B, Wu L, Xi Z, Wang T, Lu G, Zhu J et al (2017) Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J Am Chem Soc 139(12):4290–4293PubMed Li Q, Fu J, Zhu W, Chen Z, Shen B, Wu L, Xi Z, Wang T, Lu G, Zhu J et al (2017) Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J Am Chem Soc 139(12):4290–4293PubMed
57.
go back to reference Luc W, Collins C, Wang S, Xin H, He K, Kang Y, Jiao F (2017) Ag–Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J Am Chem Soc 139(5):1885–1893PubMed Luc W, Collins C, Wang S, Xin H, He K, Kang Y, Jiao F (2017) Ag–Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J Am Chem Soc 139(5):1885–1893PubMed
58.
go back to reference Hansen HA, Shi C, Lausche AC, Peterson AA, Nørskov JK (2016) Bifunctional alloys for the electroreduction of CO2 and CO. Phys Chem Chem Phys 18(13):9194–9201PubMed Hansen HA, Shi C, Lausche AC, Peterson AA, Nørskov JK (2016) Bifunctional alloys for the electroreduction of CO2 and CO. Phys Chem Chem Phys 18(13):9194–9201PubMed
59.
go back to reference Ma S, Sadakiyo M, Heima M, Luo R, Haasch RT, Gold JI, Yamauchi M, Kenis PJA (2017) Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J Am Chem Soc 139(1):47–50PubMed Ma S, Sadakiyo M, Heima M, Luo R, Haasch RT, Gold JI, Yamauchi M, Kenis PJA (2017) Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J Am Chem Soc 139(1):47–50PubMed
60.
go back to reference Kim D, Xie C, Becknell N, Yu Y, Karamad M, Chan K, Crumlin EJ, Nørskov JK, Yang P (2017) Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc 139(24):8329–8336PubMed Kim D, Xie C, Becknell N, Yu Y, Karamad M, Chan K, Crumlin EJ, Nørskov JK, Yang P (2017) Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc 139(24):8329–8336PubMed
61.
go back to reference Sarfraz S, Garcia-Esparza AT, Jedidi A, Cavallo L, Takanabe K (2016) Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal 6(5):2842–2851 Sarfraz S, Garcia-Esparza AT, Jedidi A, Cavallo L, Takanabe K (2016) Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal 6(5):2842–2851
62.
go back to reference Rasul S, Anjum DH, Jedidi A, Minenkov Y, Cavallo L, Takanabe K (2015) A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angewandte Chemie Int Edn 54(7):2146–2150 Rasul S, Anjum DH, Jedidi A, Minenkov Y, Cavallo L, Takanabe K (2015) A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angewandte Chemie Int Edn 54(7):2146–2150
63.
go back to reference Kortlever R, Peters I, Koper S, Koper MTM (2015) Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd–Pt nanoparticles. ACS Catal 5(7):3916–3923 Kortlever R, Peters I, Koper S, Koper MTM (2015) Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd–Pt nanoparticles. ACS Catal 5(7):3916–3923
64.
go back to reference Paris AR, Bocarsly AB (2018, submitted) High-efficiency conversion of CO2 to oxalate in water is possible using a Cr-Ga oxide electrocatalyst. Nat Chem. ACS Catal 2019(9):2324–2333. Paris AR, Bocarsly AB (2018, submitted) High-efficiency conversion of CO2 to oxalate in water is possible using a Cr-Ga oxide electrocatalyst. Nat Chem. ACS Catal 2019(9):2324–2333.
65.
go back to reference Amatore C, Saveant JM (1981) Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J Am Chem Soc 103(17):5021–5023 Amatore C, Saveant JM (1981) Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J Am Chem Soc 103(17):5021–5023
66.
go back to reference Gennaro A, Isse AA, Severin M-G, Vianello E, Bhugun I, Savéant J-M (1996) Mechanism of the electrochemical reduction of carbon dioxide at inert electrodes in media of low proton availability. J Chem Soc Faraday Trans 92(20):3963–3968 Gennaro A, Isse AA, Severin M-G, Vianello E, Bhugun I, Savéant J-M (1996) Mechanism of the electrochemical reduction of carbon dioxide at inert electrodes in media of low proton availability. J Chem Soc Faraday Trans 92(20):3963–3968
67.
go back to reference Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjær CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6(4):320–324PubMed Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjær CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6(4):320–324PubMed
68.
go back to reference Torelli DA, Francis SA, Crompton JC, Javier A, Thompson JR, Brunschwig BS, Soriaga MP, Lewis NS (2016) Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal 6(3):2100–2104 Torelli DA, Francis SA, Crompton JC, Javier A, Thompson JR, Brunschwig BS, Soriaga MP, Lewis NS (2016) Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal 6(3):2100–2104
69.
go back to reference Paris AR, Chu AT, O’Brien CB, Frick JJ, Francis SA, Bocarsly AB (2018) Tuning the products of CO2 electroreduction on a Ni3Ga catalyst using carbon solid supports. J Electrochem Soc 165(7):H385–H392 Paris AR, Chu AT, O’Brien CB, Frick JJ, Francis SA, Bocarsly AB (2018) Tuning the products of CO2 electroreduction on a Ni3Ga catalyst using carbon solid supports. J Electrochem Soc 165(7):H385–H392
70.
go back to reference Paris AR, Bocarsly AB (2017) Ni–Al films on glassy carbon electrodes generate an array of oxygenated organics from CO2. ACS Catal 7(10):6815–6820 Paris AR, Bocarsly AB (2017) Ni–Al films on glassy carbon electrodes generate an array of oxygenated organics from CO2. ACS Catal 7(10):6815–6820
71.
go back to reference Ghosh D, Kobayashi K, Kajiwara T, Kitagawa S, Tanaka K (2017) Catalytic hydride transfer to CO2 using Ru-NAD-type complexes under electrochemical conditions. Inorg Chem 56(18):11066–11073PubMed Ghosh D, Kobayashi K, Kajiwara T, Kitagawa S, Tanaka K (2017) Catalytic hydride transfer to CO2 using Ru-NAD-type complexes under electrochemical conditions. Inorg Chem 56(18):11066–11073PubMed
72.
go back to reference Min S, Rasul S, Li H, Grills DC, Takanabe K, Li L-J, Huang K-W (2016) Electrocatalytic reduction of carbon dioxide with a well-defined PN3 − Ru pincer complex. ChemPlusChem 81(2):166–171PubMed Min S, Rasul S, Li H, Grills DC, Takanabe K, Li L-J, Huang K-W (2016) Electrocatalytic reduction of carbon dioxide with a well-defined PN3 − Ru pincer complex. ChemPlusChem 81(2):166–171PubMed
73.
go back to reference Boston DJ, Pachón YMF, Lezna RO, de Tacconi NR, MacDonnell FM (2014) Electrocatalytic and photocatalytic conversion of CO2 to methanol using ruthenium complexes with internal pyridyl cocatalysts. Inorg Chem 53(13):6544–6553PubMed Boston DJ, Pachón YMF, Lezna RO, de Tacconi NR, MacDonnell FM (2014) Electrocatalytic and photocatalytic conversion of CO2 to methanol using ruthenium complexes with internal pyridyl cocatalysts. Inorg Chem 53(13):6544–6553PubMed
74.
go back to reference Francke R, Schille B, Roemelt M (2018) Homogeneously catalyzed electroreduction of carbon dioxide—methods, mechanisms, and catalysts. Chem Rev 118(9):4631–4701PubMed Francke R, Schille B, Roemelt M (2018) Homogeneously catalyzed electroreduction of carbon dioxide—methods, mechanisms, and catalysts. Chem Rev 118(9):4631–4701PubMed
75.
go back to reference Machan CW, Chabolla SA, Yin J, Gilson MK, Tezcan FA, Kubiak CP (2014) Supramolecular assembly promotes the electrocatalytic reduction of carbon dioxide by Re(I) bipyridine catalysts at a lower overpotential. J Am Chem Soc 136(41):14598–14607PubMed Machan CW, Chabolla SA, Yin J, Gilson MK, Tezcan FA, Kubiak CP (2014) Supramolecular assembly promotes the electrocatalytic reduction of carbon dioxide by Re(I) bipyridine catalysts at a lower overpotential. J Am Chem Soc 136(41):14598–14607PubMed
76.
go back to reference Sung S, Kumar D, Gil-Sepulcre M, Nippe M (2017) Electrocatalytic CO2 reduction by imidazolium-functionalized molecular catalysts. J Am Chem Soc 139(40):13993–13996PubMed Sung S, Kumar D, Gil-Sepulcre M, Nippe M (2017) Electrocatalytic CO2 reduction by imidazolium-functionalized molecular catalysts. J Am Chem Soc 139(40):13993–13996PubMed
77.
go back to reference Clark ML, Cheung PL, Lessio M, Carter EA, Kubiak CP (2018) Kinetic and mechanistic effects of Bipyridine (Bpy) substituent, Labile Ligand, and Brønsted acid on electrocatalytic CO2 reduction by Re(Bpy) complexes. ACS Catal 8(3):2021–2029 Clark ML, Cheung PL, Lessio M, Carter EA, Kubiak CP (2018) Kinetic and mechanistic effects of Bipyridine (Bpy) substituent, Labile Ligand, and Brønsted acid on electrocatalytic CO2 reduction by Re(Bpy) complexes. ACS Catal 8(3):2021–2029
78.
go back to reference Bourrez M, Molton F, Chardon-Noblat S, Deronzier A (2011) [Mn(Bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angewandte Chemie Int Edn 50(42):9903–9906 Bourrez M, Molton F, Chardon-Noblat S, Deronzier A (2011) [Mn(Bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angewandte Chemie Int Edn 50(42):9903–9906
79.
go back to reference Smieja JM, Sampson MD, Grice KA, Benson EE, Froehlich JD, Kubiak CP (2013) Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids. Inorg Chem 52(5):2484–2491PubMed Smieja JM, Sampson MD, Grice KA, Benson EE, Froehlich JD, Kubiak CP (2013) Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids. Inorg Chem 52(5):2484–2491PubMed
80.
go back to reference Sampson MD, Nguyen AD, Grice KA, Moore CE, Rheingold AL, Kubiak CP (2014) Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: eliminating dimerization and altering catalysis. J Am Chem Soc 136(14):5460–5471PubMed Sampson MD, Nguyen AD, Grice KA, Moore CE, Rheingold AL, Kubiak CP (2014) Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: eliminating dimerization and altering catalysis. J Am Chem Soc 136(14):5460–5471PubMed
81.
go back to reference Agarwal J, Shaw TW, Schaefer HF, Bocarsly AB (2015) Design of a catalytic active site for electrochemical CO2 reduction with Mn(I)-tricarbonyl species. Inorg Chem 54(11):5285–5294PubMed Agarwal J, Shaw TW, Schaefer HF, Bocarsly AB (2015) Design of a catalytic active site for electrochemical CO2 reduction with Mn(I)-tricarbonyl species. Inorg Chem 54(11):5285–5294PubMed
82.
go back to reference Franco F, Cometto C, Nencini L, Barolo C, Sordello F, Minero C, Fiedler J, Robert M, Gobetto R, Nervi C. Local proton source in electrocatalytic CO2 reduction with [Mn(Bpy–R)(CO)3Br] complexes. Chem Eur J 23(20):4782–4793 Franco F, Cometto C, Nencini L, Barolo C, Sordello F, Minero C, Fiedler J, Robert M, Gobetto R, Nervi C. Local proton source in electrocatalytic CO2 reduction with [Mn(Bpy–R)(CO)3Br] complexes. Chem Eur J 23(20):4782–4793
83.
go back to reference Tignor SE, Kuo H-Y, Lee TS, Scholes GD, Bocarsly AB (2018, Submitted) manganese based catalysts with varying ligand substituents for the electrochemical reduction of CO2 to CO. Organometallics Tignor SE, Kuo H-Y, Lee TS, Scholes GD, Bocarsly AB (2018, Submitted) manganese based catalysts with varying ligand substituents for the electrochemical reduction of CO2 to CO. Organometallics
84.
go back to reference Agarwal J, Shaw TW, Stanton CJ, Majetich GF, Bocarsly AB, Schaefer HF. NHC-containing manganese(I) electrocatalysts for the two-electron reduction of CO2. Angewandte Chemie Int Edn 53(20):5152–5155 Agarwal J, Shaw TW, Stanton CJ, Majetich GF, Bocarsly AB, Schaefer HF. NHC-containing manganese(I) electrocatalysts for the two-electron reduction of CO2. Angewandte Chemie Int Edn 53(20):5152–5155
85.
go back to reference Kang P, Chen Z, Nayak A, Zhang S, Meyer TJ (2014) Single catalyst electrocatalytic reduction of co2 in water to H2 + CO syngas mixtures with water oxidation to O2. Energy Environ Sci 7(12):4007–4012 Kang P, Chen Z, Nayak A, Zhang S, Meyer TJ (2014) Single catalyst electrocatalytic reduction of co2 in water to H2 + CO syngas mixtures with water oxidation to O2. Energy Environ Sci 7(12):4007–4012
86.
go back to reference Sheng M, Jiang N, Gustafson S, You B, Ess DH, Sun Y (2015) A nickel complex with a biscarbene pincer-type ligand shows high electrocatalytic reduction of CO2 over H2O. Dalton Trans 44(37):16247–16250PubMed Sheng M, Jiang N, Gustafson S, You B, Ess DH, Sun Y (2015) A nickel complex with a biscarbene pincer-type ligand shows high electrocatalytic reduction of CO2 over H2O. Dalton Trans 44(37):16247–16250PubMed
87.
go back to reference Cope JD, Liyanage NP, Kelley PJ, Denny JA, Valente EJ, Webster CE, Delcamp JH, Hollis TK (2017) Electrocatalytic reduction of CO2 with CCC-NHC pincer nickel complexes. Chem Commun 53(68):9442–9445 Cope JD, Liyanage NP, Kelley PJ, Denny JA, Valente EJ, Webster CE, Delcamp JH, Hollis TK (2017) Electrocatalytic reduction of CO2 with CCC-NHC pincer nickel complexes. Chem Commun 53(68):9442–9445
88.
go back to reference Stanton CJ, Vandezande JE, Majetich GF, Schaefer HF, Agarwal J (2016) Mn-NHC electrocatalysts: increasing π acidity lowers the reduction potential and increases the turnover frequency for CO2 reduction. Inorg Chem 55(19):9509–9512PubMed Stanton CJ, Vandezande JE, Majetich GF, Schaefer HF, Agarwal J (2016) Mn-NHC electrocatalysts: increasing π acidity lowers the reduction potential and increases the turnover frequency for CO2 reduction. Inorg Chem 55(19):9509–9512PubMed
89.
go back to reference Liyanage NP, Dulaney HA, Huckaba AJ, Jurss JW, Delcamp JH (2016) Electrocatalytic reduction of CO2 to CO with Re-Pyridyl-NHCs: proton source influence on rates and product selectivities. Inorg Chem 55(12):6085–6094PubMed Liyanage NP, Dulaney HA, Huckaba AJ, Jurss JW, Delcamp JH (2016) Electrocatalytic reduction of CO2 to CO with Re-Pyridyl-NHCs: proton source influence on rates and product selectivities. Inorg Chem 55(12):6085–6094PubMed
90.
go back to reference Carrington SJ, Chakraborty I, Bernard JML, Mascharak PK (2014) Synthesis and characterization of a “Turn-On” PhotoCORM for trackable CO delivery to biological targets. ACS Med Chem Lett 5(12):1324–1328PubMedPubMedCentral Carrington SJ, Chakraborty I, Bernard JML, Mascharak PK (2014) Synthesis and characterization of a “Turn-On” PhotoCORM for trackable CO delivery to biological targets. ACS Med Chem Lett 5(12):1324–1328PubMedPubMedCentral
91.
go back to reference Yempally V, Kyran SJ, Raju RK, Fan WY, Brothers EN, Darensbourg DJ, Bengali AA (2014) Thermal and photochemical reactivity of manganese tricarbonyl and tetracarbonyl complexes with a bulky diazabutadiene ligand. Inorg Chem 53(8):4081–4088PubMed Yempally V, Kyran SJ, Raju RK, Fan WY, Brothers EN, Darensbourg DJ, Bengali AA (2014) Thermal and photochemical reactivity of manganese tricarbonyl and tetracarbonyl complexes with a bulky diazabutadiene ligand. Inorg Chem 53(8):4081–4088PubMed
92.
go back to reference Takeda H, Koizumi H, Okamoto K, Ishitani O (2014) Photocatalytic CO2 reduction using a Mn complex as a catalyst. Chem Commun 50(12):1491–1493 Takeda H, Koizumi H, Okamoto K, Ishitani O (2014) Photocatalytic CO2 reduction using a Mn complex as a catalyst. Chem Commun 50(12):1491–1493
93.
go back to reference Stor GJ, Morrison SL, Stufkens DJ, Oskam A (1994) The remarkable photochemistry of fac-XMn(CO)3(alpha-diimine) (X = Halide): formation of Mn2(CO)6(alpha-diimine)2 via the mer isomer and photocatalytic substitution of X- in the presence of PR3. Organometallics 13(7):2641–2650 Stor GJ, Morrison SL, Stufkens DJ, Oskam A (1994) The remarkable photochemistry of fac-XMn(CO)3(alpha-diimine) (X = Halide): formation of Mn2(CO)6(alpha-diimine)2 via the mer isomer and photocatalytic substitution of X- in the presence of PR3. Organometallics 13(7):2641–2650
94.
go back to reference Stor GJ, Stufkens DJ, Vernooijs P, Baerends EJ, Fraanje J, Goubitz K (1995) X-ray structure of fac-IMn(CO)3(Bpy) and electronic structures and transitions of the complexes fac-XMn(CO)3(Bpy) (X = Cl, I) and mer-ClMn(CO)3(Bpy). Inorg Chem 34(6):1588–1594 Stor GJ, Stufkens DJ, Vernooijs P, Baerends EJ, Fraanje J, Goubitz K (1995) X-ray structure of fac-IMn(CO)3(Bpy) and electronic structures and transitions of the complexes fac-XMn(CO)3(Bpy) (X = Cl, I) and mer-ClMn(CO)3(Bpy). Inorg Chem 34(6):1588–1594
95.
go back to reference Staal LH, Oskam A, Vrieze K (1979) The syntheses and coordination properties of M(CO)3X(DAB) (M = Mn, Re; X = Cl, Br, I; DAB = 1,4-Diazabutadiene). J Organomet Chem 170(2):235–245 Staal LH, Oskam A, Vrieze K (1979) The syntheses and coordination properties of M(CO)3X(DAB) (M = Mn, Re; X = Cl, Br, I; DAB = 1,4-Diazabutadiene). J Organomet Chem 170(2):235–245
96.
go back to reference Rosa A, Ricciardi G, Baerends EJ, Stufkens DJ (1996) Metal-to-ligand charge transfer (MLCT) photochemistry of fac-Mn(Cl)(CO)3(H-DAB): a density functional study. J Phys Chem 100(38):15346–15357 Rosa A, Ricciardi G, Baerends EJ, Stufkens DJ (1996) Metal-to-ligand charge transfer (MLCT) photochemistry of fac-Mn(Cl)(CO)3(H-DAB): a density functional study. J Phys Chem 100(38):15346–15357
97.
go back to reference Kottelat E, Ruggi A, Zobi F (2016) Red-light activated PhotoCORMs of Mn(I) species bearing electron deficient 2,2′-Azopyridines. Dalton Trans 45(16):6920–6927PubMed Kottelat E, Ruggi A, Zobi F (2016) Red-light activated PhotoCORMs of Mn(I) species bearing electron deficient 2,2′-Azopyridines. Dalton Trans 45(16):6920–6927PubMed
98.
go back to reference Kleverlaan CJ, Hartl F, Stufkens DJ (1997) Real-time fourier transform IR (FTIR) spectroscopy in organometallic chemistry: mechanistic aspects of the fac to mer photoisomerization of fac-[Mn(Br)(CO)3(R-DAB)]. J Photochem Photobiol A Chem 103(3):231–237 Kleverlaan CJ, Hartl F, Stufkens DJ (1997) Real-time fourier transform IR (FTIR) spectroscopy in organometallic chemistry: mechanistic aspects of the fac to mer photoisomerization of fac-[Mn(Br)(CO)3(R-DAB)]. J Photochem Photobiol A Chem 103(3):231–237
99.
go back to reference Govender P, Pai S, Schatzschneider U, Smith GS (2013) Next generation PhotoCORMs: polynuclear tricarbonylmanganese(I)-functionalized polypyridyl metallodendrimers. Inorg Chem 52(9):5470–5478PubMed Govender P, Pai S, Schatzschneider U, Smith GS (2013) Next generation PhotoCORMs: polynuclear tricarbonylmanganese(I)-functionalized polypyridyl metallodendrimers. Inorg Chem 52(9):5470–5478PubMed
100.
go back to reference Gonzalez MA, Yim MA, Cheng S, Moyes A, Hobbs AJ, Mascharak PK (2012) Manganese carbonyls bearing tripodal polypyridine ligands as photoactive carbon monoxide-releasing molecules. Inorg Chem 51(1):601–608PubMed Gonzalez MA, Yim MA, Cheng S, Moyes A, Hobbs AJ, Mascharak PK (2012) Manganese carbonyls bearing tripodal polypyridine ligands as photoactive carbon monoxide-releasing molecules. Inorg Chem 51(1):601–608PubMed
101.
go back to reference Fei H, Sampson MD, Lee Y, Kubiak CP, Cohen SM (2015) Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg Chem 54(14):6821–6828PubMed Fei H, Sampson MD, Lee Y, Kubiak CP, Cohen SM (2015) Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg Chem 54(14):6821–6828PubMed
102.
go back to reference Amsterdam W (1996) Alkyl-dependent photochemistry of Mn(R)(CO)3(R’-DAB) (R = Me, Bz; R’ = iPr, pTol): homolysis of the Mn-R bond for R = Bz and release of CO for R = Me. Inorg Chim Acta 15 Amsterdam W (1996) Alkyl-dependent photochemistry of Mn(R)(CO)3(R’-DAB) (R = Me, Bz; R’ = iPr, pTol): homolysis of the Mn-R bond for R = Bz and release of CO for R = Me. Inorg Chim Acta 15
103.
go back to reference Machan CW, Stanton CJ, Vandezande JE, Majetich GF, Schaefer HF, Kubiak CP, Agarwal J (2015) Electrocatalytic reduction of carbon dioxide by Mn(CN)(2,2′-Bipyridine)(CO)3: CN coordination alters mechanism. Inorg Chem 54(17):8849–8856PubMed Machan CW, Stanton CJ, Vandezande JE, Majetich GF, Schaefer HF, Kubiak CP, Agarwal J (2015) Electrocatalytic reduction of carbon dioxide by Mn(CN)(2,2′-Bipyridine)(CO)3: CN coordination alters mechanism. Inorg Chem 54(17):8849–8856PubMed
104.
go back to reference Agarwal J, Iii CJS, Shaw TW, Vandezande JE, Majetich GF, Bocarsly AB, Iii HFS (2015) Exploring the effect of axial ligand substitution (X = Br, NCS, CN) on the photodecomposition and electrochemical activity of [MnX(N–C)(CO)3] complexes. Dalton Trans 44(5):2122–2131PubMed Agarwal J, Iii CJS, Shaw TW, Vandezande JE, Majetich GF, Bocarsly AB, Iii HFS (2015) Exploring the effect of axial ligand substitution (X = Br, NCS, CN) on the photodecomposition and electrochemical activity of [MnX(N–C)(CO)3] complexes. Dalton Trans 44(5):2122–2131PubMed
105.
go back to reference Kuo H-Y, Lee TS, Chu AT, Tignor SE, Scholes GD, Bocarsly AB (2018, Submitted) A Cyanide-Bridged Di-Manganese carbonyl complex that photochemically reduces CO2 to CO. Dalton Trans Kuo H-Y, Lee TS, Chu AT, Tignor SE, Scholes GD, Bocarsly AB (2018, Submitted) A Cyanide-Bridged Di-Manganese carbonyl complex that photochemically reduces CO2 to CO. Dalton Trans
106.
go back to reference Froehlich JD, Kubiak CP (2012) Homogeneous CO2 reduction by Ni(Cyclam) at a glassy carbon electrode. Inorg Chem 51(7):3932–3934PubMed Froehlich JD, Kubiak CP (2012) Homogeneous CO2 reduction by Ni(Cyclam) at a glassy carbon electrode. Inorg Chem 51(7):3932–3934PubMed
107.
go back to reference Beley M, Collin JP, Ruppert R, Sauvage JP (1986) Electrocatalytic reduction of carbon dioxide by nickel Cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. J Am Chem Soc 108(24):7461–7467PubMed Beley M, Collin JP, Ruppert R, Sauvage JP (1986) Electrocatalytic reduction of carbon dioxide by nickel Cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. J Am Chem Soc 108(24):7461–7467PubMed
108.
go back to reference Song J, Klein EL, Neese F, Ye S (2014) The mechanism of homogeneous CO2 reduction by Ni(Cyclam): product selectivity, concerted proton-electron transfer and C-O bond cleavage. Inorg Chem 53(14):7500–7507PubMed Song J, Klein EL, Neese F, Ye S (2014) The mechanism of homogeneous CO2 reduction by Ni(Cyclam): product selectivity, concerted proton-electron transfer and C-O bond cleavage. Inorg Chem 53(14):7500–7507PubMed
109.
go back to reference Wu Y, Rudshteyn B, Zhanaidarova A, Froehlich JD, Ding W, Kubiak CP, Batista VS (2017) Electrode-ligand interactions dramatically enhance CO2 conversion to CO by the [Ni(Cyclam)](PF6)2 catalyst. ACS Catal 7(8):5282–5288 Wu Y, Rudshteyn B, Zhanaidarova A, Froehlich JD, Ding W, Kubiak CP, Batista VS (2017) Electrode-ligand interactions dramatically enhance CO2 conversion to CO by the [Ni(Cyclam)](PF6)2 catalyst. ACS Catal 7(8):5282–5288
110.
go back to reference Schneider J, Jia H, Kobiro K, Cabelli DE, Muckerman JT, Fujita E (2012) Nickel(II) macrocycles: highly efficient electrocatalysts for the selective reduction of CO2 to CO. Energy Environ Sci 5(11):9502–9510 Schneider J, Jia H, Kobiro K, Cabelli DE, Muckerman JT, Fujita E (2012) Nickel(II) macrocycles: highly efficient electrocatalysts for the selective reduction of CO2 to CO. Energy Environ Sci 5(11):9502–9510
111.
go back to reference Neri G, Aldous IM, Walsh JJ, Hardwick LJ, Cowan AJ (2016) A highly active nickel electrocatalyst shows excellent selectivity for CO2 reduction in acidic media. Chem Sci 7(2):1521–1526PubMed Neri G, Aldous IM, Walsh JJ, Hardwick LJ, Cowan AJ (2016) A highly active nickel electrocatalyst shows excellent selectivity for CO2 reduction in acidic media. Chem Sci 7(2):1521–1526PubMed
112.
go back to reference Froehlich JD, Kubiak CP (2015) The homogeneous reduction of CO2 by [Ni(Cyclam)]+: increased catalytic rates with the addition of a CO scavenger. J Am Chem Soc 137(10):3565–3573PubMed Froehlich JD, Kubiak CP (2015) The homogeneous reduction of CO2 by [Ni(Cyclam)]+: increased catalytic rates with the addition of a CO scavenger. J Am Chem Soc 137(10):3565–3573PubMed
113.
go back to reference Hammouche M, Lexa D, Savéant JM, Momenteau M (1988) Catalysis of the electrochemical reduction of carbon dioxide by Iron(0) porphyrins. J Electroanal Chem Interfacial Electrochem 249(1):347–351 Hammouche M, Lexa D, Savéant JM, Momenteau M (1988) Catalysis of the electrochemical reduction of carbon dioxide by Iron(0) porphyrins. J Electroanal Chem Interfacial Electrochem 249(1):347–351
114.
go back to reference Costentin C, Drouet S, Passard G, Robert M, Savéant J-M (2013) Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C–O bond in the catalyzed electrochemical reduction of CO2. J Am Chem Soc 135(24):9023–9031 Costentin C, Drouet S, Passard G, Robert M, Savéant J-M (2013) Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C–O bond in the catalyzed electrochemical reduction of CO2. J Am Chem Soc 135(24):9023–9031
115.
go back to reference Ambre RB, Daniel Q, Fan T, Chen H, Zhang B, Wang L, Ahlquist MSG, Duan L, Sun L (2016) Molecular engineering for efficient and selective iron porphyrin catalysts for electrochemical reduction of CO2 to CO. Chem Commun 52(100):14478–14481 Ambre RB, Daniel Q, Fan T, Chen H, Zhang B, Wang L, Ahlquist MSG, Duan L, Sun L (2016) Molecular engineering for efficient and selective iron porphyrin catalysts for electrochemical reduction of CO2 to CO. Chem Commun 52(100):14478–14481
116.
go back to reference Costentin C, Robert M, Savéant J-M, Tatin A (2015) Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water. PNAS 112(22):6882–6886PubMed Costentin C, Robert M, Savéant J-M, Tatin A (2015) Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water. PNAS 112(22):6882–6886PubMed
117.
go back to reference Azcarate I, Costentin C, Robert M, Savéant J-M (2016) Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J Am Chem Soc 138(51):16639–16644PubMed Azcarate I, Costentin C, Robert M, Savéant J-M (2016) Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J Am Chem Soc 138(51):16639–16644PubMed
118.
go back to reference Azcarate I, Costentin C, Robert M, Savéant J-M (2016) Dissection of electronic substituent effects in multielectron–multistep molecular catalysis. Electrochemical CO2-to-CO conversion catalyzed by iron porphyrins. J Phys Chem C 120(51):28951–28960 Azcarate I, Costentin C, Robert M, Savéant J-M (2016) Dissection of electronic substituent effects in multielectron–multistep molecular catalysis. Electrochemical CO2-to-CO conversion catalyzed by iron porphyrins. J Phys Chem C 120(51):28951–28960
119.
go back to reference Costentin C, Passard G, Robert M, Savéant J-M (2014) Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc Natl Acad Sci U S A 111(42):14990–14994PubMedPubMedCentral Costentin C, Passard G, Robert M, Savéant J-M (2014) Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc Natl Acad Sci U S A 111(42):14990–14994PubMedPubMedCentral
120.
go back to reference Mohamed EA, Zahran ZN, Naruta Y (2015) Efficient electrocatalytic CO2 reduction with a molecular cofacial iron porphyrin dimer. Chem Commun 51(95):16900–16903 Mohamed EA, Zahran ZN, Naruta Y (2015) Efficient electrocatalytic CO2 reduction with a molecular cofacial iron porphyrin dimer. Chem Commun 51(95):16900–16903
121.
go back to reference Zahran ZN, Mohamed EA, Naruta Y (2016) Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: overpotential tuning by substituents at the porphyrin rings. Sci Rep 6 Zahran ZN, Mohamed EA, Naruta Y (2016) Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: overpotential tuning by substituents at the porphyrin rings. Sci Rep 6
122.
go back to reference Fukuzumi S, Lee Y-M, Ahn HS, Nam W (2018) Mechanisms of catalytic reduction of CO2 with heme and nonheme metal complexes. Chem Sci 9(28):6017–6034PubMedPubMedCentral Fukuzumi S, Lee Y-M, Ahn HS, Nam W (2018) Mechanisms of catalytic reduction of CO2 with heme and nonheme metal complexes. Chem Sci 9(28):6017–6034PubMedPubMedCentral
123.
go back to reference Loewen ND, Thompson EJ, Kagan M, Banales CL, Myers TW, Fettinger JC, Berben LA (2016) A pendant proton shuttle on [Fe4N(CO)12]− alters product selectivity in formate vs. H2 production via the hydride [H–Fe4N(CO)12]−. Chem Sci 7(4):2728–2735 Loewen ND, Thompson EJ, Kagan M, Banales CL, Myers TW, Fettinger JC, Berben LA (2016) A pendant proton shuttle on [Fe4N(CO)12] alters product selectivity in formate vs. H2 production via the hydride [H–Fe4N(CO)12]. Chem Sci 7(4):2728–2735
124.
go back to reference Taheri A, Thompson EJ, Fettinger JC, Berben LA (2015) An iron electrocatalyst for selective reduction of CO2 to formate in water: including thermochemical insights. ACS Catal 5(12):7140–7151 Taheri A, Thompson EJ, Fettinger JC, Berben LA (2015) An iron electrocatalyst for selective reduction of CO2 to formate in water: including thermochemical insights. ACS Catal 5(12):7140–7151
125.
go back to reference Taheri A, Carr CR, Berben LA (2018) Electrochemical methods for assessing kinetic factors in the reduction of CO2 to formate: implications for improving electrocatalyst design. ACS Catal 8(7):5787–5793 Taheri A, Carr CR, Berben LA (2018) Electrochemical methods for assessing kinetic factors in the reduction of CO2 to formate: implications for improving electrocatalyst design. ACS Catal 8(7):5787–5793
126.
go back to reference Taheri A, Loewen ND, Cluff DB, Berben LA (2018) Considering a possible role for [H-Fe4N(CO)12]2− in selective electrocatalytic CO2 reduction to formate by [Fe4N(CO)12]−. Organometallics 37(7):1087–1091 Taheri A, Loewen ND, Cluff DB, Berben LA (2018) Considering a possible role for [H-Fe4N(CO)12]2− in selective electrocatalytic CO2 reduction to formate by [Fe4N(CO)12]. Organometallics 37(7):1087–1091
127.
go back to reference Cao Z, Kim D, Hong D, Yu Y, Xu J, Lin S, Wen X, Nichols EM, Jeong K, Reimer JA et al (2016) A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J Am Chem Soc 138(26):8120–8125PubMed Cao Z, Kim D, Hong D, Yu Y, Xu J, Lin S, Wen X, Nichols EM, Jeong K, Reimer JA et al (2016) A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J Am Chem Soc 138(26):8120–8125PubMed
128.
go back to reference Chung MW, Cha IY, Ha MG, Na Y, Hwang J, Ham HC, Kim H-J, Henkensmeier D, Yoo SJ, Kim JY et al (2018) Enhanced CO2 reduction activity of polyethylene glycol-modified Au nanoparticles prepared via liquid medium sputtering. Appl Catal B Environ 237:673–680 Chung MW, Cha IY, Ha MG, Na Y, Hwang J, Ham HC, Kim H-J, Henkensmeier D, Yoo SJ, Kim JY et al (2018) Enhanced CO2 reduction activity of polyethylene glycol-modified Au nanoparticles prepared via liquid medium sputtering. Appl Catal B Environ 237:673–680
129.
go back to reference Zhang S, Kang P, Ubnoske S, Brennaman MK, Song N, House RL, Glass JT, Meyer TJ (2014) Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J Am Chem Soc 136(22):7845–7848PubMed Zhang S, Kang P, Ubnoske S, Brennaman MK, Song N, House RL, Glass JT, Meyer TJ (2014) Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J Am Chem Soc 136(22):7845–7848PubMed
130.
go back to reference Maurin A, Robert M (2016) Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J Am Chem Soc 138(8):2492–2495PubMed Maurin A, Robert M (2016) Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J Am Chem Soc 138(8):2492–2495PubMed
131.
go back to reference Pander JE, Fogg A, Bocarsly AB (2016) Utilization of electropolymerized films of cobalt porphyrin for the reduction of carbon dioxide in aqueous media. ChemCatChem 8(22):3536–3545 Pander JE, Fogg A, Bocarsly AB (2016) Utilization of electropolymerized films of cobalt porphyrin for the reduction of carbon dioxide in aqueous media. ChemCatChem 8(22):3536–3545
132.
go back to reference Shen J, Kortlever R, Kas R, Birdja YY, Diaz-Morales O, Kwon Y, Ledezma-Yanez I, Schouten KJP, Mul G, Koper MTM (2015) Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat Commun 6(1) Shen J, Kortlever R, Kas R, Birdja YY, Diaz-Morales O, Kwon Y, Ledezma-Yanez I, Schouten KJP, Mul G, Koper MTM (2015) Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat Commun 6(1)
133.
go back to reference Morlanés N, Takanabe K, Rodionov V (2016) Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal 6(5):3092–3095 Morlanés N, Takanabe K, Rodionov V (2016) Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal 6(5):3092–3095
134.
go back to reference Zhang X, Wu Z, Zhang X, Li L, Li Y, Xu H, Li X, Yu X, Zhang Z, Liang Y et al (2017) Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat Commun 8:14675PubMedPubMedCentral Zhang X, Wu Z, Zhang X, Li L, Li Y, Xu H, Li X, Yu X, Zhang Z, Liang Y et al (2017) Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat Commun 8:14675PubMedPubMedCentral
135.
go back to reference Weng Z, Jiang J, Wu Y, Wu Z, Guo X, Materna KL, Liu W, Batista VS, Brudvig GW, Wang H (2016) Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J Am Chem Soc 138(26):8076–8079PubMed Weng Z, Jiang J, Wu Y, Wu Z, Guo X, Materna KL, Liu W, Batista VS, Brudvig GW, Wang H (2016) Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J Am Chem Soc 138(26):8076–8079PubMed
136.
go back to reference Farrusseng D, Aguado S, Pinel C (2009) Metal-organic frameworks: opportunities for catalysis. Angewandte Chemie Int Edn 48(41):7502–7513 Farrusseng D, Aguado S, Pinel C (2009) Metal-organic frameworks: opportunities for catalysis. Angewandte Chemie Int Edn 48(41):7502–7513
137.
go back to reference Lin S, Diercks CS, Zhang Y-B, Kornienko N, Nichols EM, Zhao Y, Paris AR, Kim D, Yang P, Yaghi OM et al (2015) Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349(6253):1209–1213 Lin S, Diercks CS, Zhang Y-B, Kornienko N, Nichols EM, Zhao Y, Paris AR, Kim D, Yang P, Yaghi OM et al (2015) Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349(6253):1209–1213
138.
go back to reference Kornienko N, Zhao Y, Kley CS, Zhu C, Kim D, Lin S, Chang CJ, Yaghi OM, Yang P (2015) Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc 137(44):14129–14135PubMed Kornienko N, Zhao Y, Kley CS, Zhu C, Kim D, Lin S, Chang CJ, Yaghi OM, Yang P (2015) Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc 137(44):14129–14135PubMed
139.
go back to reference Zhao C, Dai X, Yao T, Chen W, Wang X, Wang J, Yang J, Wei S, Wu Y, Li Y (2017) Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc 139(24):8078–8081PubMed Zhao C, Dai X, Yao T, Chen W, Wang X, Wang J, Yang J, Wei S, Wu Y, Li Y (2017) Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc 139(24):8078–8081PubMed
140.
go back to reference Huan TN, Ranjbar N, Rousse G, Sougrati M, Zitolo A, Mougel V, Jaouen F, Fontecave M (2017) Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: a structure-selectivity study. ACS Catal 7(3):1520–1525 Huan TN, Ranjbar N, Rousse G, Sougrati M, Zitolo A, Mougel V, Jaouen F, Fontecave M (2017) Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: a structure-selectivity study. ACS Catal 7(3):1520–1525
141.
go back to reference Albo J, Vallejo D, Beobide G, Castillo O, Castaño P, Irabien A (2017) Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. Chemsuschem 10(6):1100–1109PubMed Albo J, Vallejo D, Beobide G, Castillo O, Castaño P, Irabien A (2017) Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. Chemsuschem 10(6):1100–1109PubMed
142.
go back to reference Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B 38(16):11322–11330 Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B 38(16):11322–11330
143.
go back to reference Hardee KI, Bard AJX (1977) Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions. J Electrochem Soc 124(2):10 Hardee KI, Bard AJX (1977) Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions. J Electrochem Soc 124(2):10
144.
go back to reference Tennakone K, Jayatissa AH, Punchihewa S (1989) Selective photoreduction of carbon dioxide to methanol with hydrous cuprous oxide. J Photochem Photobiol A Chem 49(3):369–375 Tennakone K, Jayatissa AH, Punchihewa S (1989) Selective photoreduction of carbon dioxide to methanol with hydrous cuprous oxide. J Photochem Photobiol A Chem 49(3):369–375
145.
go back to reference Janáky C, Hursán D, Endrődi B, Chanmanee W, Roy D, Liu D, de Tacconi NR, Dennis BH, Rajeshwar K (2016) Electro- and photoreduction of carbon dioxide: the twain shall meet at copper oxide/copper interfaces. ACS Energy Lett 1(2):332–338 Janáky C, Hursán D, Endrődi B, Chanmanee W, Roy D, Liu D, de Tacconi NR, Dennis BH, Rajeshwar K (2016) Electro- and photoreduction of carbon dioxide: the twain shall meet at copper oxide/copper interfaces. ACS Energy Lett 1(2):332–338
146.
go back to reference Ba X, Yan L-L, Huang S, Yu J, Xia X-J, Yu Y (2014) New way for CO2 reduction under visible light by a combination of a Cu electrode and semiconductor thin film: Cu2O conduction type and morphology effect. J Phys Chem C 118(42):24467–24478 Ba X, Yan L-L, Huang S, Yu J, Xia X-J, Yu Y (2014) New way for CO2 reduction under visible light by a combination of a Cu electrode and semiconductor thin film: Cu2O conduction type and morphology effect. J Phys Chem C 118(42):24467–24478
147.
go back to reference Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134(17):7231–7234PubMed Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134(17):7231–7234PubMed
148.
go back to reference Ghadimkhani G, de Tacconi NR, Chanmanee W, Janaky C, Rajeshwar K (2013) Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO–Cu2O semiconductor nanorod arrays. Chem Commun 49(13):1297 Ghadimkhani G, de Tacconi NR, Chanmanee W, Janaky C, Rajeshwar K (2013) Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO–Cu2O semiconductor nanorod arrays. Chem Commun 49(13):1297
149.
go back to reference Kecsenovity E, Endrődi B, Pápa Z, Hernádi K, Rajeshwar K, Janáky C (2016) Decoration of ultra-long carbon nanotubes with Cu2O nanocrystals: a hybrid platform for enhanced photoelectrochemical CO2 reduction. J Mater Chem A 4(8):3139–3147 Kecsenovity E, Endrődi B, Pápa Z, Hernádi K, Rajeshwar K, Janáky C (2016) Decoration of ultra-long carbon nanotubes with Cu2O nanocrystals: a hybrid platform for enhanced photoelectrochemical CO2 reduction. J Mater Chem A 4(8):3139–3147
150.
go back to reference Parkinson BA, Weaver PF (1984) Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 309(5964):148–149 Parkinson BA, Weaver PF (1984) Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 309(5964):148–149
151.
go back to reference Halmann M (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275(5676):115–116 Halmann M (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275(5676):115–116
152.
go back to reference Kočí K, Obalová L, Matějová L, Plachá D, Lacný Z, Jirkovský J, Šolcová O (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B Environ 89(3):494–502 Kočí K, Obalová L, Matějová L, Plachá D, Lacný Z, Jirkovský J, Šolcová O (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B Environ 89(3):494–502
153.
go back to reference Lo C-C, Hung C-H, Yuan C-S, Wu J-F (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Mater Solar Cells 91(19):1765–1774 Lo C-C, Hung C-H, Yuan C-S, Wu J-F (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Mater Solar Cells 91(19):1765–1774
154.
go back to reference Perini JAL, Cardoso JC, de Brito JF, Zanoni MVB (2018) Contribution of thin films of ZrO2 on TiO2 nanotubes electrodes applied in the photoelectrocatalytic CO2 conversion. J CO2 Utilization 25:254–263 Perini JAL, Cardoso JC, de Brito JF, Zanoni MVB (2018) Contribution of thin films of ZrO2 on TiO2 nanotubes electrodes applied in the photoelectrocatalytic CO2 conversion. J CO2 Utilization 25:254–263
155.
go back to reference Morterra C, Orio L (1990) Surface characterization of zirconium oxide. II. The interaction with carbon dioxide at ambient temperature. Mater Chem Phys 24(3):247–268 Morterra C, Orio L (1990) Surface characterization of zirconium oxide. II. The interaction with carbon dioxide at ambient temperature. Mater Chem Phys 24(3):247–268
156.
go back to reference Bachiller-Baeza B, Rodriguez-Ramos I, Guerrero-Ruiz A (1998) Interaction of carbon dioxide with the surface of zirconia polymorphs. Langmuir 14(13):3556–3564 Bachiller-Baeza B, Rodriguez-Ramos I, Guerrero-Ruiz A (1998) Interaction of carbon dioxide with the surface of zirconia polymorphs. Langmuir 14(13):3556–3564
157.
go back to reference Shen Q, Chen Z, Huang X, Liu M, Zhao G (2015) High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays. Environ Sci Technol 49(9):5828–5835PubMed Shen Q, Chen Z, Huang X, Liu M, Zhao G (2015) High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays. Environ Sci Technol 49(9):5828–5835PubMed
158.
go back to reference Jang J-W, Cho S, Magesh G, Jang YJ, Kim JY, Kim WY, Seo JK, Kim S, Lee K-H, Lee JS (2014) Aqueous-solution route to zinc telluride films for application to CO2 reduction. Angewandte Chemie Int Edn 53(23):5852–5857 Jang J-W, Cho S, Magesh G, Jang YJ, Kim JY, Kim WY, Seo JK, Kim S, Lee K-H, Lee JS (2014) Aqueous-solution route to zinc telluride films for application to CO2 reduction. Angewandte Chemie Int Edn 53(23):5852–5857
159.
go back to reference Jang YJ, Jang J-W, Lee J, Kim JH, Kumagai H, Lee J, Minegishi T, Kubota J, Domen K, Lee JS (2015) Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system. Energy Environ Sci 8(12):3597–3604 Jang YJ, Jang J-W, Lee J, Kim JH, Kumagai H, Lee J, Minegishi T, Kubota J, Domen K, Lee JS (2015) Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system. Energy Environ Sci 8(12):3597–3604
160.
go back to reference Gu J, Wuttig A, Krizan JW, Hu Y, Detweiler ZM, Cava RJ, Bocarsly AB (2013) Mg-doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. J Phys Chem C 117(24):12415–12422 Gu J, Wuttig A, Krizan JW, Hu Y, Detweiler ZM, Cava RJ, Bocarsly AB (2013) Mg-doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. J Phys Chem C 117(24):12415–12422
161.
go back to reference Kang U, Choi SK, Ham DJ, Ji SM, Choi W, Han DS, Abdel-Wahab A, Park H (2015) Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis. Energy Environ Sci 8(9):2638–2643 Kang U, Choi SK, Ham DJ, Ji SM, Choi W, Han DS, Abdel-Wahab A, Park H (2015) Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis. Energy Environ Sci 8(9):2638–2643
162.
go back to reference Jeong HW, Jeon TH, Jang JS, Choi W, Park H (2013) Strategic modification of BiVO4 for improving photoelectrochemical water oxidation performance. J Phys Chem C 117(18):9104–9112 Jeong HW, Jeon TH, Jang JS, Choi W, Park H (2013) Strategic modification of BiVO4 for improving photoelectrochemical water oxidation performance. J Phys Chem C 117(18):9104–9112
163.
go back to reference Kang U, Park H (2017) A facile synthesis of CuFeO2 and CuO composite photocatalyst films for the production of liquid formate from CO2 and water over a month. J Mater Chem A 5(5):2123–2131 Kang U, Park H (2017) A facile synthesis of CuFeO2 and CuO composite photocatalyst films for the production of liquid formate from CO2 and water over a month. J Mater Chem A 5(5):2123–2131
164.
go back to reference Kamimura S, Murakami N, Tsubota T, Ohno T (2015) Fabrication and characterization of a p-type Cu3Nb2O8 photocathode toward photoelectrochemical reduction of carbon dioxide. Appl Catal B Environ 174–175:471–476 Kamimura S, Murakami N, Tsubota T, Ohno T (2015) Fabrication and characterization of a p-type Cu3Nb2O8 photocathode toward photoelectrochemical reduction of carbon dioxide. Appl Catal B Environ 174–175:471–476
165.
go back to reference Boettcher SW, Warren EL, Putnam MC, Santori EA, Turner-Evans D, Kelzenberg MD, Walter MG, McKone JR, Brunschwig BS, Atwater HA et al (2011) Photoelectrochemical hydrogen evolution using Si microwire arrays. J Am Chem Soc 133(5):1216–1219PubMed Boettcher SW, Warren EL, Putnam MC, Santori EA, Turner-Evans D, Kelzenberg MD, Walter MG, McKone JR, Brunschwig BS, Atwater HA et al (2011) Photoelectrochemical hydrogen evolution using Si microwire arrays. J Am Chem Soc 133(5):1216–1219PubMed
166.
go back to reference Choi SK, Kang U, Lee S, Ham DJ, Ji SM, Park H (2014) Sn-coupled p-Si nanowire arrays for solar formate production from CO2. Adv Energy Mater 4(11):1301614 Choi SK, Kang U, Lee S, Ham DJ, Ji SM, Park H (2014) Sn-coupled p-Si nanowire arrays for solar formate production from CO2. Adv Energy Mater 4(11):1301614
167.
go back to reference Hinogami R, Nakamura Y, Yae S, Nakato Y (1998) An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles. J Phys Chem B 102(6):974–980 Hinogami R, Nakamura Y, Yae S, Nakato Y (1998) An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles. J Phys Chem B 102(6):974–980
168.
go back to reference Kuang Y, Di Vece M, Rath JK, van Dijk L, Schropp REI (2013) Elongated nanostructures for radial junction solar cells, vol 76 Kuang Y, Di Vece M, Rath JK, van Dijk L, Schropp REI (2013) Elongated nanostructures for radial junction solar cells, vol 76
169.
go back to reference Ohno T, Murakami N, Koyanagi T, Yang Y (2014) Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. J CO2 Utilization 6:17–25 Ohno T, Murakami N, Koyanagi T, Yang Y (2014) Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. J CO2 Utilization 6:17–25
170.
go back to reference Sagara N, Kamimura S, Tsubota T, Ohno T (2016) Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Appl Catal B Environ 192:193–198 Sagara N, Kamimura S, Tsubota T, Ohno T (2016) Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Appl Catal B Environ 192:193–198
171.
go back to reference Wang Y, Li H, Yao J, Wang X, Antonietti M (2011) Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation. Chem Sci 2(3):446–450 Wang Y, Li H, Yao J, Wang X, Antonietti M (2011) Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation. Chem Sci 2(3):446–450
172.
go back to reference Zhang Y, Sethuraman V, Michalsky R, Peterson AA. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts Zhang Y, Sethuraman V, Michalsky R, Peterson AA. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts
173.
go back to reference Tinnemans AHA, Koster TPM, Thewissen DHMW, Mackor A. Tetraaza-macrocyclic cobalt(II) and nickel(II) complexes as electron-transfer agents in the photo(electro)chemical and electrochemical reduction of carbon dioxide. Recueil des Travaux Chimiques des Pays-Bas 103(10):288–295 Tinnemans AHA, Koster TPM, Thewissen DHMW, Mackor A. Tetraaza-macrocyclic cobalt(II) and nickel(II) complexes as electron-transfer agents in the photo(electro)chemical and electrochemical reduction of carbon dioxide. Recueil des Travaux Chimiques des Pays-Bas 103(10):288–295
174.
go back to reference Jeon JH, Mareeswaran PM, Choi CH, Woo SI (2014) Synergism between CdTe semiconductor and pyridine—photoenhanced electrocatalysis for CO2 reduction to formic acid. RSC Adv 4(6):3016–3019 Jeon JH, Mareeswaran PM, Choi CH, Woo SI (2014) Synergism between CdTe semiconductor and pyridine—photoenhanced electrocatalysis for CO2 reduction to formic acid. RSC Adv 4(6):3016–3019
175.
go back to reference Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132(33):11539–11551 Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132(33):11539–11551
176.
go back to reference Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130(20):6342–6344PubMed Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130(20):6342–6344PubMed
177.
go back to reference Cole EB, Bocarsly AB (2010) Photochemical, electrochemical, and photoelectrochemical reduction of carbon dioxide. In: Carbon dioxide as chemical feedstock. Wiley-Blackwell, pp 291–316 Cole EB, Bocarsly AB (2010) Photochemical, electrochemical, and photoelectrochemical reduction of carbon dioxide. In: Carbon dioxide as chemical feedstock. Wiley-Blackwell, pp 291–316
178.
go back to reference Keets K, Morris A, Zeitler E, Lakkaraju P, Bocarsly A (2010) Catalytic conversion of carbon dioxide to methanol and higher order alcohols at a photoelectrochemical interface. In: Proceedings of SPIE—the international society for optical engineering 7770 Keets K, Morris A, Zeitler E, Lakkaraju P, Bocarsly A (2010) Catalytic conversion of carbon dioxide to methanol and higher order alcohols at a photoelectrochemical interface. In: Proceedings of SPIE—the international society for optical engineering 7770
179.
go back to reference Bocarsly AB, Gibson QD, Morris AJ, L’Esperance RP, Detweiler ZM, Lakkaraju PS, Zeitler EL, Shaw TW (2012) Comparative study of imidazole and pyridine catalyzed reduction of carbon dioxide at illuminated iron pyrite electrodes. ACS Catal 2(8):1684–1692 Bocarsly AB, Gibson QD, Morris AJ, L’Esperance RP, Detweiler ZM, Lakkaraju PS, Zeitler EL, Shaw TW (2012) Comparative study of imidazole and pyridine catalyzed reduction of carbon dioxide at illuminated iron pyrite electrodes. ACS Catal 2(8):1684–1692
180.
go back to reference Ganesh I, Kumar PP, Annapoorna I, Sumliner JM, Ramakrishna M, Hebalkar NY, Padmanabham G, Sundararajan G (2014) Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl Surf Sci 293:229–247 Ganesh I, Kumar PP, Annapoorna I, Sumliner JM, Ramakrishna M, Hebalkar NY, Padmanabham G, Sundararajan G (2014) Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl Surf Sci 293:229–247
181.
go back to reference Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrogen Energy 27(10):991–1022 Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrogen Energy 27(10):991–1022
182.
go back to reference Zeng G, Qiu J, Li Z, Pavaskar P, Cronin SB (2014) CO2 reduction to methanol on TiO2-passivated GaP photocatalysts. ACS Catal 4(10):3512–3516 Zeng G, Qiu J, Li Z, Pavaskar P, Cronin SB (2014) CO2 reduction to methanol on TiO2-passivated GaP photocatalysts. ACS Catal 4(10):3512–3516
183.
go back to reference Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135(38):14020–14023PubMed Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135(38):14020–14023PubMed
184.
go back to reference Yuan J, Hao C (2013) Solar-driven photoelectrochemical reduction of carbon dioxide to methanol at CuInS2 thin film photocathode. Solar Energy Mater Solar Cells 108:170–174 Yuan J, Hao C (2013) Solar-driven photoelectrochemical reduction of carbon dioxide to methanol at CuInS2 thin film photocathode. Solar Energy Mater Solar Cells 108:170–174
185.
go back to reference Yuan J, Wang P, Hao C, Yu G (2016) Photoelectrochemical reduction of carbon dioxide at CuInS2/graphene hybrid thin film electrode. Electrochim Acta 193:1–6 Yuan J, Wang P, Hao C, Yu G (2016) Photoelectrochemical reduction of carbon dioxide at CuInS2/graphene hybrid thin film electrode. Electrochim Acta 193:1–6
186.
go back to reference Zhang N, Long R, Gao C, Xiong Y (2018) Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater 61(6):771–805 Zhang N, Long R, Gao C, Xiong Y (2018) Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater 61(6):771–805
187.
go back to reference Bachmeier A, Hall S, Ragsdale SW, Armstrong FA (2014) Selective visible-light-driven CO2 reduction on a p-Type dye-sensitized NiO photocathode. J Am Chem Soc 136(39):13518–13521PubMedPubMedCentral Bachmeier A, Hall S, Ragsdale SW, Armstrong FA (2014) Selective visible-light-driven CO2 reduction on a p-Type dye-sensitized NiO photocathode. J Am Chem Soc 136(39):13518–13521PubMedPubMedCentral
188.
go back to reference Kumagai H, Sahara G, Maeda K, Higashi M, Abe R, Ishitani O (2017) Hybrid photocathode consisting of a CuGaO2 p-type semiconductor and a Ru(II)–Re(I) supramolecular photocatalyst: non-biased visible-light-driven CO2 reduction with water oxidation. Chem Sci 8(6):4242–4249PubMedPubMedCentral Kumagai H, Sahara G, Maeda K, Higashi M, Abe R, Ishitani O (2017) Hybrid photocathode consisting of a CuGaO2 p-type semiconductor and a Ru(II)–Re(I) supramolecular photocatalyst: non-biased visible-light-driven CO2 reduction with water oxidation. Chem Sci 8(6):4242–4249PubMedPubMedCentral
189.
go back to reference Hye Won D, Chung J, Hyeon Park S, Kim E-H, Ihl Woo S (2015) Photoelectrochemical production of useful fuels from carbon dioxide on a polypyrrole-coated p-ZnTe photocathode under visible light irradiation. J Mater Chem A 3(3):1089–1095 Hye Won D, Chung J, Hyeon Park S, Kim E-H, Ihl Woo S (2015) Photoelectrochemical production of useful fuels from carbon dioxide on a polypyrrole-coated p-ZnTe photocathode under visible light irradiation. J Mater Chem A 3(3):1089–1095
190.
go back to reference Sekizawa K, Sato S, Arai T, Morikawa T (2018) Solar-driven photocatalytic CO2 reduction in water utilizing a ruthenium complex catalyst on p-type Fe2O3 with a multiheterojunction. ACS Catal 8(2):1405–1416 Sekizawa K, Sato S, Arai T, Morikawa T (2018) Solar-driven photocatalytic CO2 reduction in water utilizing a ruthenium complex catalyst on p-type Fe2O3 with a multiheterojunction. ACS Catal 8(2):1405–1416
191.
go back to reference Guzmán D, Isaacs M, Osorio-Román I, García M, Astudillo J, Ohlbaum M (2015) Photoelectrochemical reduction of carbon dioxide on quantum-dot-modified electrodes by electric field directed layer-by-layer assembly methodology. ACS Appl Mater Interfaces 7(36):19865–19869PubMed Guzmán D, Isaacs M, Osorio-Román I, García M, Astudillo J, Ohlbaum M (2015) Photoelectrochemical reduction of carbon dioxide on quantum-dot-modified electrodes by electric field directed layer-by-layer assembly methodology. ACS Appl Mater Interfaces 7(36):19865–19869PubMed
192.
go back to reference White JL, Baruch MF, Pander JE, Hu Y, Fortmeyer IC, Park JE, Zhang T, Liao K, Gu J, Yan Y et al (2015) Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev 115(23):12888–12935PubMed White JL, Baruch MF, Pander JE, Hu Y, Fortmeyer IC, Park JE, Zhang T, Liao K, Gu J, Yan Y et al (2015) Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev 115(23):12888–12935PubMed
193.
go back to reference Cheng J, Zhang M, Wu G, Wang X, Zhou J, Cen K (2014) Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes. Environ Sci Technol 48(12):7076–7084PubMed Cheng J, Zhang M, Wu G, Wang X, Zhou J, Cen K (2014) Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes. Environ Sci Technol 48(12):7076–7084PubMed
194.
go back to reference Cheng J, Zhang M, Wu G, Wang X, Zhou J, Cen K (2015) Optimizing CO2 reduction conditions to increase carbon atom conversion using a Pt-RGO||Pt-TNT photoelectrochemical cell. Solar Energy Mater Solar Cells 132:606–614 Cheng J, Zhang M, Wu G, Wang X, Zhou J, Cen K (2015) Optimizing CO2 reduction conditions to increase carbon atom conversion using a Pt-RGO||Pt-TNT photoelectrochemical cell. Solar Energy Mater Solar Cells 132:606–614
195.
go back to reference Cheng J, Zhang M, Liu J, Zhou J, Cen K (2015) A Cu foam cathode used as a Pt–RGO catalyst matrix to improve CO2 reduction in a photoelectrocatalytic cell with a TiO2 photoanode. J Mater Chem A 3(24):12947–12957 Cheng J, Zhang M, Liu J, Zhou J, Cen K (2015) A Cu foam cathode used as a Pt–RGO catalyst matrix to improve CO2 reduction in a photoelectrocatalytic cell with a TiO2 photoanode. J Mater Chem A 3(24):12947–12957
196.
go back to reference Chang X, Wang T, Zhang P, Wei Y, Zhao J, Gong J. Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angewandte Chemie Int Edn 55(31):8840–8845 Chang X, Wang T, Zhang P, Wei Y, Zhao J, Gong J. Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angewandte Chemie Int Edn 55(31):8840–8845
197.
go back to reference Magesh G, Kim ES, Kang HJ, Banu M, Kim JY, Kim JH, Lee JS (2014) A versatile photoanode-driven photoelectrochemical system for conversion of CO2 to fuels with high faradaic efficiencies at low bias potentials. J Mater Chem A 2(7):2044 Magesh G, Kim ES, Kang HJ, Banu M, Kim JY, Kim JH, Lee JS (2014) A versatile photoanode-driven photoelectrochemical system for conversion of CO2 to fuels with high faradaic efficiencies at low bias potentials. J Mater Chem A 2(7):2044
198.
go back to reference Song JT, Iwasaki T, Hatano M (2015) Photoelectrochemical CO2 reduction on 3C-SiC photoanode in aqueous solution. Jpn J Appl Phys 54(4S):04DR05 Song JT, Iwasaki T, Hatano M (2015) Photoelectrochemical CO2 reduction on 3C-SiC photoanode in aqueous solution. Jpn J Appl Phys 54(4S):04DR05
199.
go back to reference Zhang Y, Luc W, Hutchings GS, Jiao F (2016) Photoelectrochemical carbon dioxide reduction using a nanoporous Ag cathode. ACS Appl Mater Interfaces 8(37):24652–24658PubMed Zhang Y, Luc W, Hutchings GS, Jiao F (2016) Photoelectrochemical carbon dioxide reduction using a nanoporous Ag cathode. ACS Appl Mater Interfaces 8(37):24652–24658PubMed
200.
go back to reference May PW (2000) Diamond thin films: a 21st-century material. Philos Trans R Soc Lond A Math Phys Eng Sci 358(1766):473–495 May PW (2000) Diamond thin films: a 21st-century material. Philos Trans R Soc Lond A Math Phys Eng Sci 358(1766):473–495
201.
go back to reference Ekimov EA, Sidorov VA, Bauer ED, Mel’nik NN, Curro NJ, Thompson JD, Stishov SM (2004) Superconductivity in diamond. Nature 428(6982):542–545 Ekimov EA, Sidorov VA, Bauer ED, Mel’nik NN, Curro NJ, Thompson JD, Stishov SM (2004) Superconductivity in diamond. Nature 428(6982):542–545
202.
go back to reference Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J et al (2009) Ultralong spin coherence time in isotopically engineered diamond. Nat Mater 8(5):383–387PubMed Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J et al (2009) Ultralong spin coherence time in isotopically engineered diamond. Nat Mater 8(5):383–387PubMed
203.
go back to reference Liu Y, Chen S, Quan X, Yu H (2015) Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc 137(36):11631–11636PubMed Liu Y, Chen S, Quan X, Yu H (2015) Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc 137(36):11631–11636PubMed
204.
go back to reference Roy N, Hirano Y, Kuriyama H, Sudhagar P, Suzuki N, Katsumata K, Nakata K, Kondo T, Yuasa M, Serizawa I et al (2016) Boron-doped diamond semiconductor electrodes: efficient photoelectrochemical CO2 reduction through surface modification. Sci Rep 6(1) Roy N, Hirano Y, Kuriyama H, Sudhagar P, Suzuki N, Katsumata K, Nakata K, Kondo T, Yuasa M, Serizawa I et al (2016) Boron-doped diamond semiconductor electrodes: efficient photoelectrochemical CO2 reduction through surface modification. Sci Rep 6(1)
Metadata
Title
Electrochemical and Photoelectrochemical Transformations of Aqueous CO2
Authors
Aubrey R. Paris
Jessica J. Frick
Danrui Ni
Michael R. Smith
Andrew B. Bocarsly
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-15868-2_7