Skip to main content
Top
Published in: Journal of Polymer Research 4/2024

01-04-2024 | Review paper

Electrospun polyacrylonitrile-based nanofibrous membrane for various biomedical applications

Authors: Balaganesh Danagody, Neeraja Bose, Kalaivizhi Rajappan

Published in: Journal of Polymer Research | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This is a state-of-the-art overview of the critical features, varieties, and uses of nanocomposite fibres based on polyacrylonitrile. Polyacrylonitrile (PAN) is an economically important acrylic polymer with superior chemical, thermal, mechanical, and electrical properties. Membranes utilized in the biomedical fields can be used as implantable materials and bio-separative materials, with a role in regenerative and purification techniques. Out of all the techniques, electrospinning is given preference over other scaffold preparation methods because it can create 3D nanofiber structures. Electrospun nanofibers also have unique qualities, such as a high surface area-to-volume ratio, porosity, stability, permeability, and morphology that resembles an extracellular matrix. The introduction of nanofillers (carbon nanotubes, graphene oxides), and various nanocomposites into the electrospun PAN fibres. The nitrile groups' interfacial bonding with nanofillers has enhanced the properties of PAN nanofibers. The chemical structure, superhydrophobicity, superoleophobicity, porosity, and wettability of nanofibers have developed a variety of advantageous nanocomposites for fibre applications. The primary goal of the review is to update on the recent research PAN with various polymer blends and nanocomposites for biomedical applications. Furthermore, the implanted materials' biological treatments and therapeutic modalities and their advantages and disadvantages and developing processes are reviewed. Therefore, this review aims to present an in-depth investigation of PAN, its nanofiber composites, and their related features that make them appropriate for bioactive materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Meinig RP (2010) Clinical use of resorbable polymeric membranes in the treatment of bone defects. Orthop Clin North Am 41:39–47CrossRefPubMed Meinig RP (2010) Clinical use of resorbable polymeric membranes in the treatment of bone defects. Orthop Clin North Am 41:39–47CrossRefPubMed
6.
go back to reference Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRefPubMed Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRefPubMed
8.
go back to reference Senthilkumar K, Saba N, Rajini N et al (2018) Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Constr Build Mater 174:713–729CrossRef Senthilkumar K, Saba N, Rajini N et al (2018) Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Constr Build Mater 174:713–729CrossRef
11.
go back to reference Kausar A (2019) Applications of polymer/graphene nanocomposite membranes: A review. Mater Res Innov 23:276–287CrossRef Kausar A (2019) Applications of polymer/graphene nanocomposite membranes: A review. Mater Res Innov 23:276–287CrossRef
18.
go back to reference Kausar A (2019) Polyacrylonitrile-based nanocomposite fibers: A review of current developments. J Plast Film Sheeting 35:295–316CrossRef Kausar A (2019) Polyacrylonitrile-based nanocomposite fibers: A review of current developments. J Plast Film Sheeting 35:295–316CrossRef
32.
go back to reference Abbasi N, Hamlet S, Love RM, Nguyen NT (2020) Porous scaffolds for bone regeneration. J Sci Adv Mater Devices 5:1–9CrossRef Abbasi N, Hamlet S, Love RM, Nguyen NT (2020) Porous scaffolds for bone regeneration. J Sci Adv Mater Devices 5:1–9CrossRef
37.
go back to reference Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170CrossRef Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170CrossRef
38.
go back to reference Yusof N, Ismail AF (2012) Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review. J Anal Appl Pyrolysis 93:1–13CrossRef Yusof N, Ismail AF (2012) Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review. J Anal Appl Pyrolysis 93:1–13CrossRef
40.
go back to reference Kausar A (2019) Polyacrylonitrile nanocomposite with carbon nanostructures: a review. Polyme Plast Technol Mater 58:707–731CrossRef Kausar A (2019) Polyacrylonitrile nanocomposite with carbon nanostructures: a review. Polyme Plast Technol Mater 58:707–731CrossRef
42.
go back to reference Malik T, Razzaq H, Razzaque S et al (2019) Design and synthesis of polymeric membranes using water-soluble pore formers: an overview. Polym Bull 76:4879–4901CrossRef Malik T, Razzaq H, Razzaque S et al (2019) Design and synthesis of polymeric membranes using water-soluble pore formers: an overview. Polym Bull 76:4879–4901CrossRef
50.
go back to reference Ambekar RS, Kandasubramanian B (2019) Advancements in nanofibers for wound dressing: a review. Eur Polym J 117:304–336CrossRef Ambekar RS, Kandasubramanian B (2019) Advancements in nanofibers for wound dressing: a review. Eur Polym J 117:304–336CrossRef
51.
go back to reference Bhattacharya D, Ghosh B, Mukhopadhyay M (2019) Development of nanotechnology for advancement and application in wound healing: A review. IET Nanobiotechnol 13:778–785CrossRefPubMedPubMedCentral Bhattacharya D, Ghosh B, Mukhopadhyay M (2019) Development of nanotechnology for advancement and application in wound healing: A review. IET Nanobiotechnol 13:778–785CrossRefPubMedPubMedCentral
67.
go back to reference Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2:224–247PubMedPubMedCentral Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2:224–247PubMedPubMedCentral
68.
go back to reference Lareau CR, Deren ME, Fantry A et al (2015) Does autogenous bone graft work? A logistic regression analysis of data from 159 papers in the foot and ankle literature. Foot Ankle Surg 21:150–159CrossRefPubMed Lareau CR, Deren ME, Fantry A et al (2015) Does autogenous bone graft work? A logistic regression analysis of data from 159 papers in the foot and ankle literature. Foot Ankle Surg 21:150–159CrossRefPubMed
69.
go back to reference Shibuya N, Jupiter DC (2015) Bone Graft Substitute: Allograft and Xenograft. Clin Podiatr Med Surg 32:21–34CrossRefPubMed Shibuya N, Jupiter DC (2015) Bone Graft Substitute: Allograft and Xenograft. Clin Podiatr Med Surg 32:21–34CrossRefPubMed
70.
go back to reference Tan XP, Tan YJ, Chow CSL et al (2017) Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C 76:1328–1343CrossRef Tan XP, Tan YJ, Chow CSL et al (2017) Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C 76:1328–1343CrossRef
84.
86.
Metadata
Title
Electrospun polyacrylonitrile-based nanofibrous membrane for various biomedical applications
Authors
Balaganesh Danagody
Neeraja Bose
Kalaivizhi Rajappan
Publication date
01-04-2024
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 4/2024
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-024-03965-x

Other articles of this Issue 4/2024

Journal of Polymer Research 4/2024 Go to the issue

Premium Partners