Skip to main content
Top

2015 | OriginalPaper | Chapter

7. Elektrolyse von Wasser

Author : Peter Kurzweil, Prof. Dr.

Published in: Elektrochemische Speicher

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Wasserstoff gilt als langfristiger chemischer Energieträger, zumal die Elektrolyse von Wasser die Nutzung von Windenergie, Solarstrom, Wasser- und Gezeitenkraft erlaubt. Das Kapitel fasst den Stand der Technik zur elektrolytischen Wasserstofferzeugung zusammen: Technologien, Materialien, Zelldesign, Leistungsdaten und Marktübersicht der alkalischen, SPE- und Festoxid-Elektrolyse,

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications, 2. Aufl. Wiley, New York (2001) Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications, 2. Aufl. Wiley, New York (2001)
2.
go back to reference Beck, F., Goldacker, H., Kreysa, G., Vogt, H., Wendt, H.: Electrochemistry. In: Ullmann’s Encyclopedia of Industrial Chemistry, Bd. A 9, S. 183–254 (1987), Zugriff: November 2015 Beck, F., Goldacker, H., Kreysa, G., Vogt, H., Wendt, H.: Electrochemistry. In: Ullmann’s Encyclopedia of Industrial Chemistry, Bd. A 9, S. 183–254 (1987), Zugriff: November 2015
3.
go back to reference Carmo, M., Fritz, D.L., Mergel, J., Stolten, J.: A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013) CrossRef Carmo, M., Fritz, D.L., Mergel, J., Stolten, J.: A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013) CrossRef
4.
go back to reference Dunsch, L.: Geschichte der Elektrochemie. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1985) Dunsch, L.: Geschichte der Elektrochemie. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1985)
5.
go back to reference Hamann, C.H., Vielstich, W.: Elektrochemie, 4. Aufl. Wiley-VCH, Weinheim (2005) Hamann, C.H., Vielstich, W.: Elektrochemie, 4. Aufl. Wiley-VCH, Weinheim (2005)
6.
go back to reference Hund, F.: Geschichte der physikalischen Begriffe. Spektrum Akademischer Verlag (1996) Hund, F.: Geschichte der physikalischen Begriffe. Spektrum Akademischer Verlag (1996)
7.
go back to reference Kortüm, G.: Lehrbuch der Elektrochemie, 4. Aufl. Verlag Chemie, Weinheim (1970), antiquarisch Kortüm, G.: Lehrbuch der Elektrochemie, 4. Aufl. Verlag Chemie, Weinheim (1970), antiquarisch
8.
go back to reference Kurzweil, P.: Chemie, 10. Aufl., Kap. 9 „Elektrochemie“. Springer Vieweg, Wiesbaden (2015) Kurzweil, P.: Chemie, 10. Aufl., Kap. 9 „Elektrochemie“. Springer Vieweg, Wiesbaden (2015)
9.
go back to reference Kurzweil, P.: History: Electrochemistry. In: Garche, J. et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 3, S. 533–554. Elsevier, Amsterdam (2009) CrossRef Kurzweil, P.: History: Electrochemistry. In: Garche, J. et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 3, S. 533–554. Elsevier, Amsterdam (2009) CrossRef
10.
go back to reference Kurzweil, P., Fischle, H.-J.: A new monitoring method for electrochemical aggregates by impedance spectroscopy. J. Power Sources 127, 331–340 (2004) CrossRef Kurzweil, P., Fischle, H.-J.: A new monitoring method for electrochemical aggregates by impedance spectroscopy. J. Power Sources 127, 331–340 (2004) CrossRef
11.
go back to reference Laguna-Bercero, M.A.: Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power Sources 203, 4–16 (2012) CrossRef Laguna-Bercero, M.A.: Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power Sources 203, 4–16 (2012) CrossRef
12.
go back to reference Leung, M.K.H., Ni, M., Leung, D.Y.C.: Solid oxide electrolyzer cells. In: Sherif, S.A. et al. (Hrsg.) Handbook of Hydrogen Energy, Kap. 7, S. 179–211. CRC Press, Boca Raton, USA (2014) Leung, M.K.H., Ni, M., Leung, D.Y.C.: Solid oxide electrolyzer cells. In: Sherif, S.A. et al. (Hrsg.) Handbook of Hydrogen Energy, Kap. 7, S. 179–211. CRC Press, Boca Raton, USA (2014)
13.
go back to reference Millet, P., Grigoriev, S.: Water electrolysis technologies. In: Gandia, L.M., Arzamendi, G., Dieguez, P.M. (Hrsg.) Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, S. 19–42. Elsevier, Amsterdam (2013) CrossRef Millet, P., Grigoriev, S.: Water electrolysis technologies. In: Gandia, L.M., Arzamendi, G., Dieguez, P.M. (Hrsg.) Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, S. 19–42. Elsevier, Amsterdam (2013) CrossRef
14.
go back to reference Smolinka, T., Rau, S., Hebling, C.: Polymer electrolyte membrane (PEM) water electrolysis. In: Stolten, D. (Hrsg.) Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications, S. 271–288. Wiley-VCH, Weinheim (2010) Smolinka, T., Rau, S., Hebling, C.: Polymer electrolyte membrane (PEM) water electrolysis. In: Stolten, D. (Hrsg.) Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications, S. 271–288. Wiley-VCH, Weinheim (2010)
16.
go back to reference Smolinka, T., Ojong, E.T., Garche, J.: Hydrogen production from renewable energies – electrolyzer technologiese. In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 8. Elsevier, Amsterdam (2015) Smolinka, T., Ojong, E.T., Garche, J.: Hydrogen production from renewable energies – electrolyzer technologiese. In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 8. Elsevier, Amsterdam (2015)
17.
go back to reference Zeng, K., Zhang, D.: Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010) CrossRef Zeng, K., Zhang, D.: Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010) CrossRef
18.
go back to reference (a) Allcock, H.R., Sunderland, N.J., Ravikiran, R., Nelson, J.M.: Polyphosphazenes with novel architectures: influence on physical properties and behavior as solid polymer electrolytes. Macromolecules 31(23), 8026–8035 (1998) (b) Jankowsky, S., Hiller, M.M., Wiemhöfer, H.-D.: Preparation and electrochemical performance of polyphosphazene based salt-in-polymer electrolyte membranes for lithium ion batteries. J. Power Sources 253, 256–262 (2014) (a) Allcock, H.R., Sunderland, N.J., Ravikiran, R., Nelson, J.M.: Polyphosphazenes with novel architectures: influence on physical properties and behavior as solid polymer electrolytes. Macromolecules 31(23), 8026–8035 (1998) (b) Jankowsky, S., Hiller, M.M., Wiemhöfer, H.-D.: Preparation and electrochemical performance of polyphosphazene based salt-in-polymer electrolyte membranes for lithium ion batteries. J. Power Sources 253, 256–262 (2014)
19.
go back to reference Allebrod, F., et al.: Electrical conductivity measurements of aqueous and immobilized potassium hydroxide. Int. J. Hydrogen Energy 37, 16505–16514 (2012) CrossRef Allebrod, F., et al.: Electrical conductivity measurements of aqueous and immobilized potassium hydroxide. Int. J. Hydrogen Energy 37, 16505–16514 (2012) CrossRef
20.
go back to reference Crow, D.R.: Principles and applications of electrochemistry, 4. Aufl., Chapman & Hall, London (1994) Crow, D.R.: Principles and applications of electrochemistry, 4. Aufl., Chapman & Hall, London (1994)
21.
go back to reference Gilliam, R.J., et al.: A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int. J. Hydrogen Energy 32, 359–364 (2007) CrossRef Gilliam, R.J., et al.: A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int. J. Hydrogen Energy 32, 359–364 (2007) CrossRef
22.
go back to reference Goni-Urtiaga, A., Presvytes, D., Scott, K.: Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Review. Int. J. Hyrogen Energy 37, 3358–3372 (2012) CrossRef Goni-Urtiaga, A., Presvytes, D., Scott, K.: Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Review. Int. J. Hyrogen Energy 37, 3358–3372 (2012) CrossRef
23.
go back to reference Heise, M., Rasche, B., Isaeva, A., Baranov, A., Ruck, M., et al.: A metallic room-temperature oxide ion conductor. Angew. Chemie Int. Ed. 53(28), 7344–7348 (2014) CrossRef Heise, M., Rasche, B., Isaeva, A., Baranov, A., Ruck, M., et al.: A metallic room-temperature oxide ion conductor. Angew. Chemie Int. Ed. 53(28), 7344–7348 (2014) CrossRef
24.
go back to reference Hine, F., Murakami, K.: Bubble effects on the solution IR drop in a vertical electrolyzer under free and force convection. J. Electrochem. Soc. 127, 292–297 (1980) CrossRef Hine, F., Murakami, K.: Bubble effects on the solution IR drop in a vertical electrolyzer under free and force convection. J. Electrochem. Soc. 127, 292–297 (1980) CrossRef
25.
go back to reference (a) Ito, H., et al.: Properties of Nafion membranes under PEM water electrolysis conditions. Int. J. Hydrogen Energy 36, 10527–10540 (2011) (b) Ito, H., et al.: Experimental study on porous current collectors of PEM electrolyzers. Int. J. Hydrogen Energy 37, 7418–7428 (2012) (a) Ito, H., et al.: Properties of Nafion membranes under PEM water electrolysis conditions. Int. J. Hydrogen Energy 36, 10527–10540 (2011) (b) Ito, H., et al.: Experimental study on porous current collectors of PEM electrolyzers. Int. J. Hydrogen Energy 37, 7418–7428 (2012)
26.
go back to reference Ivers-Tiffée, E.: Electrolytes: Solid: Oxygen Ion, Bd. 2, S. 181–187; Solid: Mixed ionic-electronic conductors, Bd. 2, S. 174–180. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources. Elsevier, Amsterdam (2009) Ivers-Tiffée, E.: Electrolytes: Solid: Oxygen Ion, Bd. 2, S. 181–187; Solid: Mixed ionic-electronic conductors, Bd. 2, S. 174–180. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources. Elsevier, Amsterdam (2009)
27.
go back to reference Kreuer, K.D.: Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003) CrossRef Kreuer, K.D.: Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003) CrossRef
28.
go back to reference Macmullin, R.B., Muccini, G.A.: Characteristics of porous beds and structures. AlChE J. 2, 393–403 (1956) Macmullin, R.B., Muccini, G.A.: Characteristics of porous beds and structures. AlChE J. 2, 393–403 (1956)
29.
go back to reference Merle, G., Wessling, M., Nijmeijer, K.: Anion exchange membranes for alkaline fuel cells: a review. J. Membrane Sci. 377, 1–35 (2011) CrossRef Merle, G., Wessling, M., Nijmeijer, K.: Anion exchange membranes for alkaline fuel cells: a review. J. Membrane Sci. 377, 1–35 (2011) CrossRef
30.
go back to reference Mittelsteadt, C.K., Staser, J.A.: Electrolyzer membranes. In: Matyjaszewski, K., Mölller, M. (Hrsg.) Polymer Science: A Comprehensive Reference, S. 849–871. Elsevier, Amsterdam (2012) CrossRef Mittelsteadt, C.K., Staser, J.A.: Electrolyzer membranes. In: Matyjaszewski, K., Mölller, M. (Hrsg.) Polymer Science: A Comprehensive Reference, S. 849–871. Elsevier, Amsterdam (2012) CrossRef
31.
go back to reference Moseley, P.: Electrolyte, solid: Sodium ions. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 196–214. Elsevier, Amsterdam (2009) CrossRef Moseley, P.: Electrolyte, solid: Sodium ions. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 196–214. Elsevier, Amsterdam (2009) CrossRef
32.
33.
go back to reference Ohlrogge, K., Ebert, K.: Membranen: Grundlagen, Verfahren und Industrielle Anwendungen. Wiley-VCH, Weinheim (2006) CrossRef Ohlrogge, K., Ebert, K.: Membranen: Grundlagen, Verfahren und Industrielle Anwendungen. Wiley-VCH, Weinheim (2006) CrossRef
34.
go back to reference Péra, M.-C., Hissel, D., Gualous, H., Turpin, Ch.: Electrochemical Components. Wiley, Hoboken (2013) CrossRef Péra, M.-C., Hissel, D., Gualous, H., Turpin, Ch.: Electrochemical Components. Wiley, Hoboken (2013) CrossRef
35.
go back to reference Spacil, H.S., Tedmon, C.S.: Electrochemical dissociation of water vapor in solid oxide electrolyte cells. I. Thermodynamics and cell characteristics. J. Electrochem. Soc. 116, 1618 (1969) CrossRef Spacil, H.S., Tedmon, C.S.: Electrochemical dissociation of water vapor in solid oxide electrolyte cells. I. Thermodynamics and cell characteristics. J. Electrochem. Soc. 116, 1618 (1969) CrossRef
36.
go back to reference Chen, K., Ai, N., Jiang, S.P.: Performance and stability of (La, Sr)MnO3-Y2O3-ZrO2 composite oxygen electrodes under solid oxide electrolysis cell operation. Int. J. Hydrogen Energy 37, 10517–10525 (2012) CrossRef Chen, K., Ai, N., Jiang, S.P.: Performance and stability of (La, Sr)MnO3-Y2O3-ZrO2 composite oxygen electrodes under solid oxide electrolysis cell operation. Int. J. Hydrogen Energy 37, 10517–10525 (2012) CrossRef
37.
go back to reference Cruz, J.C., et al.: Preparation and characterization of RuO2 catalysts for oxygen evolution in a solid polymer electrolyte. J. Electrochem. Sci. 6, 6607–6619 (2011) Cruz, J.C., et al.: Preparation and characterization of RuO2 catalysts for oxygen evolution in a solid polymer electrolyte. J. Electrochem. Sci. 6, 6607–6619 (2011)
38.
go back to reference Dasari, H.P., et al.: Electrochemical characterization of Ni-yttria stabilized zirconia electrode for hydrogen production in solid oxide electrolysis cells. Int. J. Hydrogen Energy 240, 721–728 (2013) Dasari, H.P., et al.: Electrochemical characterization of Ni-yttria stabilized zirconia electrode for hydrogen production in solid oxide electrolysis cells. Int. J. Hydrogen Energy 240, 721–728 (2013)
39.
go back to reference Fominykh, K., Feckl, J.M., Sicklinger, J., Döblinger, M., Böcklein, S., et al.: Ultrasmall dispersible crystalline Nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Adv. Funct. Mater. 24(21), 3123–3129 (2014) CrossRef Fominykh, K., Feckl, J.M., Sicklinger, J., Döblinger, M., Böcklein, S., et al.: Ultrasmall dispersible crystalline Nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Adv. Funct. Mater. 24(21), 3123–3129 (2014) CrossRef
40.
go back to reference Gan, Y., et al.: Composite cathode La0.4Sr0.4TiO3-δCe0.8Sm0.2O2-δ impregnated with Ni for high temperature steam electrolysis. J. Power Sources 245, 245–255 (2014) CrossRef Gan, Y., et al.: Composite cathode La0.4Sr0.4TiO3-δCe0.8Sm0.2O2-δ impregnated with Ni for high temperature steam electrolysis. J. Power Sources 245, 245–255 (2014) CrossRef
41.
go back to reference Grigoriev, S.A., et al.: Optimization of porous current collectors for PEM water electrolysers. Int. J. Hydrogen Energy 34, 4968–4973 (2009) CrossRef Grigoriev, S.A., et al.: Optimization of porous current collectors for PEM water electrolysers. Int. J. Hydrogen Energy 34, 4968–4973 (2009) CrossRef
42.
go back to reference Kurzweil, P.: Precious metal oxides for electrochemical energy converters: Pseudocapacitance and pH dependence of redox processes. J. Power Sources 190(1), 189–200 (2009) CrossRef Kurzweil, P.: Precious metal oxides for electrochemical energy converters: Pseudocapacitance and pH dependence of redox processes. J. Power Sources 190(1), 189–200 (2009) CrossRef
43.
go back to reference Mori, M., et al.: Thermal expansion of Nickel-Zirconia anodes in solid oxide fuel cells during fabrication and operation. J. Electrochem. Soc. 145(4), 1374–1381 (1998) CrossRef Mori, M., et al.: Thermal expansion of Nickel-Zirconia anodes in solid oxide fuel cells during fabrication and operation. J. Electrochem. Soc. 145(4), 1374–1381 (1998) CrossRef
44.
go back to reference Nikiforov, A.V., et al.: WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysis. Int. J. Hydrogen Energy 37, 18591–18597 (2012) CrossRef Nikiforov, A.V., et al.: WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysis. Int. J.  Hydrogen Energy 37, 18591–18597 (2012) CrossRef
45.
go back to reference Pourbaix, M.: Atlas of electrochemical equilibria in aqueous solutions. Cebelcor, Brüssel (1965) Pourbaix, M.: Atlas of electrochemical equilibria in aqueous solutions. Cebelcor, Brüssel (1965)
46.
go back to reference Rosalbino, F.: Electrocatalytic activity of crystalline Ni-Co-M (M = Cr, Mn, Cu) alloys on the oxygen evolution reaction in an alkaline environment. Int. J. Hydrogen Energy 38, 10170–10177 (2013) CrossRef Rosalbino, F.: Electrocatalytic activity of crystalline Ni-Co-M (M = Cr, Mn, Cu) alloys on the oxygen evolution reaction in an alkaline environment. Int. J. Hydrogen Energy 38, 10170–10177 (2013) CrossRef
47.
go back to reference (a) Schmid, O., Kurzweil, P., Schmid, B., Tillmetz, W.: Elektrode für elektrochemische Energiewandler. Insbesondere: IrO2 · xH2O als Elektrodenmaterial. Dornier GmbH, DE 19647534 A1 (1998), Patent verfügbar über: http://worldwide.espacenet.com (b) Kurzweil, P., Schmid, O., Schmid, B.: DE 4313474 C2 (1993) (a) Schmid, O., Kurzweil, P., Schmid, B., Tillmetz, W.: Elektrode für elektrochemische Energiewandler. Insbesondere: IrO2 · xH2O als Elektrodenmaterial. Dornier GmbH, DE 19647534 A1 (1998), Patent verfügbar über: http://​worldwide.​espacenet.​com (b) Kurzweil, P., Schmid, O., Schmid, B.: DE 4313474 C2 (1993)
48.
go back to reference Trasatti, S.: Electrodes of conductive metallic oxides, Part A. Elsevier, Amsterdam (1980) Trasatti, S.: Electrodes of conductive metallic oxides, Part A. Elsevier, Amsterdam (1980)
49.
go back to reference Trasatti, S.: Hydrogen evolution. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 41–48. Elsevier, Amsterdam (2009) CrossRef Trasatti, S.: Hydrogen evolution. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 41–48. Elsevier, Amsterdam (2009) CrossRef
50.
go back to reference Trasatti, S.: Oxygen evolution. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 49–55. Elsevier, Amsterdam (2009) CrossRef Trasatti, S.: Oxygen evolution. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 49–55. Elsevier, Amsterdam (2009) CrossRef
51.
go back to reference Wu, K., Scott, K.: Cu x Co\({}_{3-x}\)O4 (\(0\leq x<1\)) nanoparticles for oxygen evolution reaction in high performance alkaline exchange membrane water electrolysers. J. Mater. Chem. 21, 12344–12351 (2011) CrossRef Wu, K., Scott, K.: Cu x Co\({}_{3-x}\)O4 (\(0\leq x<1\)) nanoparticles for oxygen evolution reaction in high performance alkaline exchange membrane water electrolysers. J. Mater. Chem. 21, 12344–12351 (2011) CrossRef
52.
go back to reference Wu, L., et al.: Characterisation of porous Ni3Al electrodes for hydrogen evolution in strong alkali solution. Int. Mater. Chem, Phys. 141, 553–561 (2013) CrossRef Wu, L., et al.: Characterisation of porous Ni3Al electrodes for hydrogen evolution in strong alkali solution. Int. Mater. Chem, Phys. 141, 553–561 (2013) CrossRef
53.
go back to reference Xu, J., Liu, G., Li, J., Wang, X.: The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as an assisting reagent for the oxygen evolution reaction. Electrochimica Acta 59, 105–112 (2012) CrossRef Xu, J., Liu, G., Li, J., Wang, X.: The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as an assisting reagent for the oxygen evolution reaction. Electrochimica Acta 59, 105–112 (2012) CrossRef
54.
go back to reference Xu, S,. et al.: Composite cathode based on Fe-loaded LSCM for Steam electrolysis in an oxide-ion-conducting solid oxide electrolyser. J. Power Sources 239, 332–340 (2013) CrossRef Xu, S,. et al.: Composite cathode based on Fe-loaded LSCM for Steam electrolysis in an oxide-ion-conducting solid oxide electrolyser. J. Power Sources 239, 332–340 (2013) CrossRef
55.
go back to reference Yang, C.: High performance solid oxide electrolysis cells using Pr0.8Sr1.2(Co,Fe)0.8 Nb0.2O4+δCo-Fe alloy hydrogen electrodes. Int. J. Hydrogen Energy 38, 11202–11208 (2013) CrossRef Yang, C.: High performance solid oxide electrolysis cells using Pr0.8Sr1.2(Co,Fe)0.8 Nb0.2O4+δCo-Fe alloy hydrogen electrodes. Int. J. Hydrogen Energy 38, 11202–11208 (2013) CrossRef
56.
go back to reference Arico, A.S., et al.: Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. J. Appl. Electrochem. 43, 107–117 (2013) CrossRef Arico, A.S., et al.: Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. J. Appl. Electrochem. 43, 107–117 (2013) CrossRef
57.
go back to reference Davenport, R.J., Schubert, F.H., Grigger, D.J.: Space water electrolysis: space station through advanced missions. J. Power Sources 36, 235–250 (1991) CrossRef Davenport, R.J., Schubert, F.H., Grigger, D.J.: Space water electrolysis: space station through advanced missions. J. Power Sources 36, 235–250 (1991) CrossRef
58.
go back to reference Dönitz, W., Erdle, E.: High-temperature electrolysis of water vapor status of development and perspectives for application. Int. J. Hydrogen Energy 10(5), 291–295 (1985) CrossRef Dönitz, W., Erdle, E.: High-temperature electrolysis of water vapor status of development and perspectives for application. Int. J. Hydrogen Energy 10(5), 291–295 (1985) CrossRef
59.
go back to reference (a) Benz, U., Preiss, H., Schmid, O.: FAE-Elektrolyse. Dornier post No. 2 (1992) (b) Funke, H., Tan, G., Friedrichs, D., Jung, K.: O2 generation: A key system for extended manned space missions. Sixth European Symposium on Space Environmental Control Systems, SP-400, S. 767. Noordwijk, The Netherlands (1997) (c) Knorr, W., Raatschen, W., Tan, G., Witt, J.: The FAE electrolyser flight experiment FAVORITE. SAE Technical Paper 2003-01-2629 (2003), doi:10.4271/2003-01-2629 (d) Knorr, W., Tan, G., Witt, J., Houdou, B.: The FAE electrolyser flight experiment FAVORITE: Final design and pre-flight ground test results. SAE Technical Paper 2005-01-2809 (2005), doi:10.4271/2005-01-2809 (e) Bockstahler, K., Lucas, J., Witt, J., Laurini, D.: Design status of the advanced closed loop system ACLS for accommodation on the ISS. 41st International Conference on Environmental Systems, July 2011 (f) Schmid, O., Kurzweil, P.: Verfahren und Vorrichtung zur Elektrolyse. EP0764727 B1 (1995) (a) Benz, U., Preiss, H., Schmid, O.: FAE-Elektrolyse. Dornier post No. 2 (1992) (b) Funke, H., Tan, G., Friedrichs, D., Jung, K.: O2 generation: A key system for extended manned space missions. Sixth European Symposium on Space Environmental Control Systems, SP-400, S. 767. Noordwijk, The Netherlands (1997) (c) Knorr, W., Raatschen, W., Tan, G., Witt, J.: The FAE electrolyser flight experiment FAVORITE. SAE Technical Paper 2003-01-2629 (2003), doi:10.4271/2003-01-2629 (d) Knorr, W., Tan, G., Witt, J., Houdou, B.: The FAE electrolyser flight experiment FAVORITE: Final design and pre-flight ground test results. SAE Technical Paper 2005-01-2809 (2005), doi:10.4271/2005-01-2809 (e) Bockstahler, K., Lucas, J., Witt, J., Laurini, D.: Design status of the advanced closed loop system ACLS for accommodation on the ISS. 41st International Conference on Environmental Systems, July 2011 (f) Schmid, O., Kurzweil, P.: Verfahren und Vorrichtung zur Elektrolyse. EP0764727 B1 (1995)
60.
go back to reference Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972) CrossRef Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972) CrossRef
61.
go back to reference Haryu, E., et al.: Mechanical structure and performance evaluation of high differential pressure water electrolysis cell. Honda R&D Tech. Rev. 23(2) (2011) Haryu, E., et al.: Mechanical structure and performance evaluation of high differential pressure water electrolysis cell. Honda R&D Tech. Rev. 23(2) (2011)
62.
go back to reference Hauch, A., et al.: Highly efficient high temperature electrolysis. J. Mater. Chem. 18, 2331–2340 (2008) CrossRef Hauch, A., et al.: Highly efficient high temperature electrolysis. J. Mater. Chem. 18, 2331–2340 (2008) CrossRef
63.
go back to reference (a) Laguna-Bercero, M.A., et al.: Steam electrolysis using a microtubular solid oxid fuel cell. J. Electrochem. Soc. 157, B852–B855 (2010) (b) Laguna-Bercero, M.A.: Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power Sources 203, 4–16 (2012) (a) Laguna-Bercero, M.A., et al.: Steam electrolysis using a microtubular solid oxid fuel cell. J. Electrochem. Soc. 157, B852–B855 (2010) (b) Laguna-Bercero, M.A.: Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power Sources 203, 4–16 (2012)
64.
go back to reference Matshushima, H., et al.: Water electrolysis under microgravity Part 1. Experimental technique. Electrochimica Acta 48, 4119–4125 (2003) CrossRef Matshushima, H., et al.: Water electrolysis under microgravity Part 1. Experimental technique. Electrochimica Acta 48, 4119–4125 (2003) CrossRef
65.
go back to reference Marini, S. et al.: Advanced alkaline electrolysis. Electrochimica Acta 82, 384–931 (2012) CrossRef Marini, S. et al.: Advanced alkaline electrolysis. Electrochimica Acta 82, 384–931 (2012) CrossRef
66.
go back to reference Mawdsley, J.R., et al.: Post-test evaluation of oxygen electrodes from solid electrolysis stacks. Int. J. Hydrogen Energy 34, 4198–4207 (2009) CrossRef Mawdsley, J.R., et al.: Post-test evaluation of oxygen electrodes from solid electrolysis stacks. Int. J. Hydrogen Energy 34, 4198–4207 (2009) CrossRef
67.
go back to reference Mittelsteadt, C., Norman, T., Rich, M., Willey, J.: PEM electrolyzers and PEM regenerative fuel cells industrial view (Giner Inc. USA). In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 11. Elsevier, Amsterdam (2015) Mittelsteadt, C., Norman, T., Rich, M., Willey, J.: PEM electrolyzers and PEM regenerative fuel cells industrial view (Giner Inc. USA). In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 11. Elsevier, Amsterdam (2015)
68.
go back to reference Ni, M., Leung, M.K.H., Leung, Y.C.: Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int. J. Hydrogen Energy 33, 2337–2354 (2008) CrossRef Ni, M., Leung, M.K.H., Leung, Y.C.: Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int. J. Hydrogen Energy 33, 2337–2354 (2008) CrossRef
69.
go back to reference Millet, P.: Water electrolysis for hydrogen generation. In: Liu, R.-S., et al. (Hrsg.) Electrochemical Technologies for Energy Storage and Conversion, Bd. 2, S. 383–423. Wiley-VCH, Weinheim (2012) CrossRef Millet, P.: Water electrolysis for hydrogen generation. In: Liu, R.-S., et al. (Hrsg.) Electrochemical Technologies for Energy Storage and Conversion, Bd. 2, S. 383–423. Wiley-VCH, Weinheim (2012) CrossRef
70.
go back to reference (a) MTU Deutsche Aerospace: MTU-Energiewandlungsanlagen: Der Hochleistungselektrolyseur, Firmenprospekt, München (b) Huppmann, G.: Das MTU Direkt-Brennstoffzellen Hot-Module (MCFC). In: Ledjeff-Hey, K., Mahlendorf, F., Roes, J. (Hrsg.) Brennstoffzellen, Kap. 9, S. 170–186. C.F. Müller Verlag, Heidelberg (2001) (c) DaimlerChrysler: Hightech Report, S. 34–35 (2000) (d) Brand, R.-A., Hofmann, H., Hildebrandt, J.: Zellaufbau für Elektrolyseure und Brennstoffzellen. DE 4208057 A1 (1993) Hofmann, H., Wendt, H.: Verfahren zur Herstellung eines Verbundes aus einer Cermet-Schicht und einer porösen Metallschicht auf einer oder beiden Seiten der Cermet-Schicht als Diaphragma mit Elektrode(n), EP 0297315 A2 (1989) (a) MTU Deutsche Aerospace: MTU-Energiewandlungsanlagen: Der Hochleistungselektrolyseur, Firmenprospekt, München (b) Huppmann, G.: Das MTU Direkt-Brennstoffzellen Hot-Module (MCFC). In: Ledjeff-Hey, K., Mahlendorf, F., Roes, J. (Hrsg.) Brennstoffzellen, Kap. 9, S. 170–186. C.F. Müller Verlag, Heidelberg (2001) (c) DaimlerChrysler: Hightech Report, S. 34–35 (2000) (d) Brand, R.-A., Hofmann, H., Hildebrandt, J.: Zellaufbau für Elektrolyseure und Brennstoffzellen. DE 4208057 A1 (1993) Hofmann, H., Wendt, H.: Verfahren zur Herstellung eines Verbundes aus einer Cermet-Schicht und einer porösen Metallschicht auf einer oder beiden Seiten der Cermet-Schicht als Diaphragma mit Elektrode(n), EP 0297315 A2 (1989)
71.
go back to reference Naterer, G.F., et al.: Progress of international hydrogen production network for the thermochemical Cu-Cl cycle. Int. J. Hydrogen Energy 38, 740–759 (2013) CrossRef Naterer, G.F., et al.: Progress of international hydrogen production network for the thermochemical Cu-Cl cycle. Int. J. Hydrogen Energy 38, 740–759 (2013) CrossRef
72.
go back to reference Nie, J., Chen, Y.: Numerical modeling of three-dimensional two phase gas-liquid flow in the flow field plate of a PEM electrolysis cell. Int. J. Hydrogen Energy 35, 3183–3197 (2010) CrossRef Nie, J., Chen, Y.: Numerical modeling of three-dimensional two phase gas-liquid flow in the flow field plate of a PEM electrolysis cell. Int. J. Hydrogen Energy 35, 3183–3197 (2010) CrossRef
73.
go back to reference Petipas, F., et al.: Transient operation of a solid oxide electrolysis cell. Int. J. Hydrogen Energy 38(7), 2957–2964 (2013) CrossRef Petipas, F., et al.: Transient operation of a solid oxide electrolysis cell. Int. J. Hydrogen Energy 38(7), 2957–2964 (2013) CrossRef
74.
go back to reference Tietz, F., et al.: Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation. J. Power Sources 223, 129–135 (2013) CrossRef Tietz, F., et al.: Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation. J. Power Sources 223, 129–135 (2013) CrossRef
75.
go back to reference Wang, J.-T., et al.: Corrosion behavior of three bipolar plate materials in simulated SPE water electrolysis environment. Int. J. Hydrogen Energy 37, 12069–12073 (2012) CrossRef Wang, J.-T., et al.: Corrosion behavior of three bipolar plate materials in simulated SPE water electrolysis environment. Int. J. Hydrogen Energy 37, 12069–12073 (2012) CrossRef
Metadata
Title
Elektrolyse von Wasser
Author
Peter Kurzweil, Prof. Dr.
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-658-10900-4_7