Skip to main content
Top

2011 | OriginalPaper | Chapter

3. Elemental and Redox Balances

Authors : John Villadsen, Jens Nielsen, Gunnar Lidén

Published in: Bioreaction Engineering Principles

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In Chap. 2 we painted a picture of the potential of Biotechnology as the provider of a great many of the chemicals used in our daily life. Now, in small steps the quantitative tools for analysis of the cellular reactions will be introduced. First, the rates of cellular reactions will be determined by application of mass balances to data obtained in steady-state continuous bioreactors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
In the literature one often finds another notation for the yield coefficient, namely Y i/j for Y ji .
 
2
According to Table 3.1, 100 g biomass contains 57 g protein, or 57/22.45 = 2.539 C-mole.
The same calculation is done for the other 6 constituents of the biomass, and one finds that 100 g biomass corresponds to 4.241 C-mole.
4.241 C-mole biomass contains 0.31 × 2.539 + 0.75 × 0.471 + ⋯ = 1.678 mol O, or 1.678/4.241 = 0.396 oxygen atom per C-mol biomass.
The same calculation is done for the other elements of X, and the biomass composition (3.19) results.
 
3
When δ is normally distributed, the function to be minimized is the same for the least-square minimization problem and for the maximum-likelihood minimization problem. If the error vector is not normally distributed the estimate in (3.50) remains valid for the least-squares minimization problem, whereas it will no longer be the maximum-likelihood estimate (Wang and Stephanopoulos 1983).
 
Literature
go back to reference Aalst van, M.A., Leeuwen van, M.A., Pot, M.C, Loosdrecht van, M., and Heijnen, J.J, (1997). Kinetic modelling of PHB production and consumption by Paracoccus pantotrophus under dynamic substrate supply. Biotechnol. Bioeng., 55, 773–782.CrossRef Aalst van, M.A., Leeuwen van, M.A., Pot, M.C, Loosdrecht van, M., and Heijnen, J.J, (1997). Kinetic modelling of PHB production and consumption by Paracoccus pantotrophus under dynamic substrate supply. Biotechnol. Bioeng., 55, 773–782.CrossRef
go back to reference Andersen, M.Y., Pedersen, N., Brabrand, H., Hallager, L., and Jørgensen, S.B. (1997). Regulation of a continuous yeast bioreactor near the critical dilution rate using a productostat. J. Biotechnol., 54, 1–14.CrossRef Andersen, M.Y., Pedersen, N., Brabrand, H., Hallager, L., and Jørgensen, S.B. (1997). Regulation of a continuous yeast bioreactor near the critical dilution rate using a productostat. J. Biotechnol., 54, 1–14.CrossRef
go back to reference Bijkerk, A.H.E. and Hall, R.J. (1977). A mechanistic model of the aerobic growth of Saccharomyces cerevisiae. Biotechnol. Bioeng., 19, 267–296.CrossRef Bijkerk, A.H.E. and Hall, R.J. (1977). A mechanistic model of the aerobic growth of Saccharomyces cerevisiae. Biotechnol. Bioeng., 19, 267–296.CrossRef
go back to reference Christensen, L.H., Schulze, U., Nielsen, J., and Villadsen, J. (1995). Acoustic gas analysis for fast and precise monitoring of bioreactors. Chem. Eng. Sci., 50, 2601–2610.CrossRef Christensen, L.H., Schulze, U., Nielsen, J., and Villadsen, J. (1995). Acoustic gas analysis for fast and precise monitoring of bioreactors. Chem. Eng. Sci., 50, 2601–2610.CrossRef
go back to reference Duboc, P. (1997). Transient growth of Saccharomyces cerevisiae, a quantitative approach, PhD thesis EFPL (Lausanne). Duboc, P. (1997). Transient growth of Saccharomyces cerevisiae, a quantitative approach, PhD thesis EFPL (Lausanne).
go back to reference Duboc, P., and von Stockar, U. (1998). Systematic errors in data evaluation due to ethanol stripping and water vaporization. Biotechnol. Bioeng., 58, 428–439.CrossRef Duboc, P., and von Stockar, U. (1998). Systematic errors in data evaluation due to ethanol stripping and water vaporization. Biotechnol. Bioeng., 58, 428–439.CrossRef
go back to reference Erickson, L.E., Minkevich, I.G., and Eroshin, V.K. (1978). Application of mass and energy balance regularities in fermentation. Biotechnol. Bioeng., 20, 1595–1621.CrossRef Erickson, L.E., Minkevich, I.G., and Eroshin, V.K. (1978). Application of mass and energy balance regularities in fermentation. Biotechnol. Bioeng., 20, 1595–1621.CrossRef
go back to reference Goldberg, I. and Rokem, J.S. (1991). Biology of Methylotrophs, Butterworth-Heinemann, Boston. Goldberg, I. and Rokem, J.S. (1991). Biology of Methylotrophs, Butterworth-Heinemann, Boston.
go back to reference Heijden, R.T.J.M. van der, Heijnen, J.J., Hellinga, C., Romein, B., and Luyben, K., Ch. A.M. (1994a). Linear constraint relations in biochemical reaction systems: I, Classification of the calculability and the balanceability of conversion rates. Biotechnol. Bioeng., 43, 3–10.CrossRef Heijden, R.T.J.M. van der, Heijnen, J.J., Hellinga, C., Romein, B., and Luyben, K., Ch. A.M. (1994a). Linear constraint relations in biochemical reaction systems: I, Classification of the calculability and the balanceability of conversion rates. Biotechnol. Bioeng., 43, 3–10.CrossRef
go back to reference Heijden, R.T.J.M. van der, Romein, B., Heijnen, J.J., Hellinga, C., and Luyben, K. Ch. A.M. (1994b). Linear constraint relations in biochemical reaction systems: II, Diagnosis and estimation of gross errors, Biotechnol. Bioeng., 43, 11–20. Heijden, R.T.J.M. van der, Romein, B., Heijnen, J.J., Hellinga, C., and Luyben, K. Ch. A.M. (1994b). Linear constraint relations in biochemical reaction systems: II, Diagnosis and estimation of gross errors, Biotechnol. Bioeng., 43, 11–20.
go back to reference Lange, H.C., and Heijnen, J.J. (2001). Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol. Bioeng., 75, 334–344.CrossRef Lange, H.C., and Heijnen, J.J. (2001). Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol. Bioeng., 75, 334–344.CrossRef
go back to reference Lee, S.Y., and Choi, J.I. (2001). Production of microbial polyesters by fermentation of recombinant microorganisms. Advances in Biochem. Eng., 71, 183–207. Lee, S.Y., and Choi, J.I. (2001). Production of microbial polyesters by fermentation of recombinant microorganisms. Advances in Biochem. Eng., 71, 183–207.
go back to reference Lei, F., Rotbøll, M., and Bay-Jørgensen, S. (2001). A biochemically structured model for Saccharomyces cerevisiae. J. Biotechnol., 88, 205–221.CrossRef Lei, F., Rotbøll, M., and Bay-Jørgensen, S. (2001). A biochemically structured model for Saccharomyces cerevisiae. J. Biotechnol., 88, 205–221.CrossRef
go back to reference Madron, F., Veverka, V., and Vanecek, V. (1977). Statistical analysis of material balance of a chemical reactor. A.I.Ch.E. Journal, 23, 482–486. Madron, F., Veverka, V., and Vanecek, V. (1977). Statistical analysis of material balance of a chemical reactor. A.I.Ch.E. Journal, 23, 482–486.
go back to reference Maier, R.M., Pepper, I.L., and Gerba, C.P., (2000). Environmental Microbiology, Academic Press (London, UK). Maier, R.M., Pepper, I.L., and Gerba, C.P., (2000). Environmental Microbiology, Academic Press (London, UK).
go back to reference Meyenburg, K. von (1969). Katabolit-Repression und der Sprossungszyklus von Saccharomyces cerevisiae, Dissertation, ETH, Zürich. Meyenburg, K. von (1969). Katabolit-Repression und der Sprossungszyklus von Saccharomyces cerevisiae, Dissertation, ETH, Zürich.
go back to reference Nielsen, J., Johansen, C.L., and Villadsen, J. (1994). Culture fluorescense measurements during batch and fed-batch cultivations with Penicillium crysogenum. J. Biotechnol., 38, 51–62.CrossRef Nielsen, J., Johansen, C.L., and Villadsen, J. (1994). Culture fluorescense measurements during batch and fed-batch cultivations with Penicillium crysogenum. J. Biotechnol., 38, 51–62.CrossRef
go back to reference Nissen, T.L., Anderlund, M., Nielsen, J., Villadsen, J., and Kjelland-Brandt, M.C. (2001). Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPD-pool. Yeast, 18, 19–32.CrossRef Nissen, T.L., Anderlund, M., Nielsen, J., Villadsen, J., and Kjelland-Brandt, M.C. (2001). Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPD-pool. Yeast, 18, 19–32.CrossRef
go back to reference Nordqvist, M., Nielsen, P.M., and Villadsen, J. (2007). Oxidation of lactose to Lactobionic acid by a Microdochium nivale carbohydrate oxidase: Kinetics and operational stability. Biotechnol. Bioeng., 97, 694–707.CrossRef Nordqvist, M., Nielsen, P.M., and Villadsen, J. (2007). Oxidation of lactose to Lactobionic acid by a Microdochium nivale carbohydrate oxidase: Kinetics and operational stability. Biotechnol. Bioeng., 97, 694–707.CrossRef
go back to reference Pedersen, H., Christensen, B., Hjort, C., and Nielsen, J. (2000). Construction and characterization of an oxalic acid nonproducing strain of Aspergillus niger. Metabol. Eng., 2, 34–41.CrossRef Pedersen, H., Christensen, B., Hjort, C., and Nielsen, J. (2000). Construction and characterization of an oxalic acid nonproducing strain of Aspergillus niger. Metabol. Eng., 2, 34–41.CrossRef
go back to reference Pham, H., Larsson, G., and Enfors S.-O. (1999). Modeling of aerobic growth of Saccharomyces cerevisiae in a pH-auxostat. Bioproc. Eng., 20, 537–544. Pham, H., Larsson, G., and Enfors S.-O. (1999). Modeling of aerobic growth of Saccharomyces cerevisiae in a pH-auxostat. Bioproc. Eng., 20, 537–544.
go back to reference Postma, E., Verduyn, C., Scheffers, A., and van Dijken, J. (1989). Enzymatic analysis of the Crabtree-effect in glucose limited chemostat cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiology, 55, 468–477. Postma, E., Verduyn, C., Scheffers, A., and van Dijken, J. (1989). Enzymatic analysis of the Crabtree-effect in glucose limited chemostat cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiology, 55, 468–477.
go back to reference Rarey, J.R., and Gmehling, J. (1993). Computer – operated differential static apparatus for the measurement of vapor-liquid equilibrium data. Fluid Phase Equilib., 83, 279–287.CrossRef Rarey, J.R., and Gmehling, J. (1993). Computer – operated differential static apparatus for the measurement of vapor-liquid equilibrium data. Fluid Phase Equilib., 83, 279–287.CrossRef
go back to reference Roels, J.A. (1983). Energetics and Kinetics in Biotechnology. Elsevier Biomedical Press, Amsterdam. Roels, J.A. (1983). Energetics and Kinetics in Biotechnology. Elsevier Biomedical Press, Amsterdam.
go back to reference Schulze, U. (1995). Anaerobic physiology of S. cerevisiae. Ph.D. thesis, Department of Biotechnology, DTU. Schulze, U. (1995). Anaerobic physiology of S. cerevisiae. Ph.D. thesis, Department of Biotechnology, DTU.
go back to reference Schulze, U., Lidén, G., Nielsen, J., and Villadsen, J. (1996). Physiological effect of N-starvation in an anaerobic batch culture of S. cerevisiae. Microbiology, 142, 2299–2310.CrossRef Schulze, U., Lidén, G., Nielsen, J., and Villadsen, J. (1996). Physiological effect of N-starvation in an anaerobic batch culture of S. cerevisiae. Microbiology, 142, 2299–2310.CrossRef
go back to reference Wang, N.S. and Stephanopoulos, G. (1983). Application of macroscopic balances to the identification of gross measurement errors. Biotechnol. Bioeng., 25, 2177–2208.CrossRef Wang, N.S. and Stephanopoulos, G. (1983). Application of macroscopic balances to the identification of gross measurement errors. Biotechnol. Bioeng., 25, 2177–2208.CrossRef
Metadata
Title
Elemental and Redox Balances
Authors
John Villadsen
Jens Nielsen
Gunnar Lidén
Copyright Year
2011
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-9688-6_3

Premium Partners