Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Embedded Deep Neural Networks

Authors : Bert Moons, Daniel Bankman, Marian Verhelst

Published in: Embedded Deep Learning

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep learning networks have recently come up as the state-of-the-art classification algorithms in artificial intelligence, achieving super-human performance in a number of perceptive tasks in computer vision and automated speech recognition. Although these networks are extremely powerful, bringing their functionality to always-on embedded devices and hence to wearable applications is currently impossible because of their compute and memory requirements. First, this chapter introduces the basic concepts in machine learning and deep learning: network architectures and how to train them. Second, this chapter lists the challenges associated with the large compute requirements in deep learning and outlines a vision to overcome them. Finally, this chapter gives an overview of my contributions to the field and a general structure of the book.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/, software available from tensorflow.org Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://​www.​tensorflow.​org/​, software available from tensorflow.org
go back to reference Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. Preprint arXiv:14090473 Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. Preprint arXiv:14090473
go back to reference Bankman D, Yang L, Moons B, Verhelst M, Murmann B (2018) An always-on 3.8umuj/classification 86 accelerator with all memory on chip in 28nm CMOS. ISSCC technical digest Bankman D, Yang L, Moons B, Verhelst M, Murmann B (2018) An always-on 3.8umuj/classification 86 accelerator with all memory on chip in 28nm CMOS. ISSCC technical digest
go back to reference Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: Computer vision–ECCV 2006, pp 404–417 Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: Computer vision–ECCV 2006, pp 404–417
go back to reference Canziani A, Paszke A, Culurciello E (2016) An analysis of deep neural network models for practical applications. Preprint arXiv:160507678 Canziani A, Paszke A, Culurciello E (2016) An analysis of deep neural network models for practical applications. Preprint arXiv:160507678
go back to reference Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):15CrossRef Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):15CrossRef
go back to reference Chen YH, Krishna T, Emer J, Sze V (2016) Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks. ISSCC Dig of Technical papers, pp 262–263 Chen YH, Krishna T, Emer J, Sze V (2016) Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks. ISSCC Dig of Technical papers, pp 262–263
go back to reference Chiu CC, Sainath TN, Wu Y, Prabhavalkar R, Nguyen P, Chen Z, Kannan A, Weiss RJ, Rao K, Gonina K, et al (2017) State-of-the-art speech recognition with sequence-to-sequence models. Preprint arXiv:171201769 Chiu CC, Sainath TN, Wu Y, Prabhavalkar R, Nguyen P, Chen Z, Kannan A, Weiss RJ, Rao K, Gonina K, et al (2017) State-of-the-art speech recognition with sequence-to-sequence models. Preprint arXiv:171201769
go back to reference Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. P arXiv:14061078 Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. P arXiv:14061078
go back to reference Chollet F (2016) Xception: deep learning with depthwise separable convolutions. Preprint arXiv:161002357 Chollet F (2016) Xception: deep learning with depthwise separable convolutions. Preprint arXiv:161002357
go back to reference Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005, vol 1. IEEE, New York, pp 886–893 Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005, vol 1. IEEE, New York, pp 886–893
go back to reference Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 248–255 Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 248–255
go back to reference Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159MathSciNetMATH Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159MathSciNetMATH
go back to reference Erfani SM, Rajasegarar S, Karunasekera S, Leckie C (2016) High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn 58:121–134CrossRef Erfani SM, Rajasegarar S, Karunasekera S, Leckie C (2016) High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn 58:121–134CrossRef
go back to reference Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRef Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRef
go back to reference Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (VOC) challenge. Int J Comput Vis 88(2):303–338CrossRef Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (VOC) challenge. Int J Comput Vis 88(2):303–338CrossRef
go back to reference Glorot X, Bordes A, Bengio Y (2011) Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 513–520 Glorot X, Bordes A, Bengio Y (2011) Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 513–520
go back to reference Godfrey JJ, Holliman EC, McDaniel J (1992) Switchboard: telephone speech corpus for research and development. In: IEEE international conference on acoustics, speech, and signal processing, 1992. ICASSP-92, 1992, vol 1. IEEE, New York, pp 517–520 Godfrey JJ, Holliman EC, McDaniel J (1992) Switchboard: telephone speech corpus for research and development. In: IEEE international conference on acoustics, speech, and signal processing, 1992. ICASSP-92, 1992, vol 1. IEEE, New York, pp 517–520
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680
go back to reference Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH
go back to reference Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz MA, Dally WJ (2016) EIE: efficient inference engine on compressed deep neural network. In: International symposium on computer architecture (ISCA) Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz MA, Dally WJ (2016) EIE: efficient inference engine on compressed deep neural network. In: International symposium on computer architecture (ISCA)
go back to reference He K, Zhang X, Ren S, Sun J (2016a) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) He K, Zhang X, Ren S, Sun J (2016a) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)
go back to reference He K, Zhang X, Ren S, Sun J (2016b) Deep residual learning for image recognition. In: Conference on computer vision and pattern recognition (CVPR) He K, Zhang X, Ren S, Sun J (2016b) Deep residual learning for image recognition. In: Conference on computer vision and pattern recognition (CVPR)
go back to reference Hills G, Park R, Shulaker M, Hillard J, Kahng A, Wong S, Bankman D, Moons B, Yang L, Verhelst M, Murmann B, Mitra S (2018) Trig: hardware accelerator for inference-based applications and experimental demonstration using carbon nanotube FETs. In: Design automation conference (DAC) Hills G, Park R, Shulaker M, Hillard J, Kahng A, Wong S, Bankman D, Moons B, Yang L, Verhelst M, Murmann B, Mitra S (2018) Trig: hardware accelerator for inference-based applications and experimental demonstration using carbon nanotube FETs. In: Design automation conference (DAC)
go back to reference Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J (2001) Gradient flow in recurrent nets: the difficulty of learning long-term dependencies Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J (2001) Gradient flow in recurrent nets: the difficulty of learning long-term dependencies
go back to reference Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366CrossRef Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366CrossRef
go back to reference Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. Preprint arXiv:170404861 Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. Preprint arXiv:170404861
go back to reference Huang G, Liu Z, Weinberger KQ, van der Maaten L (2016) Densely connected convolutional networks. Preprint arXiv:160806993 Huang G, Liu Z, Weinberger KQ, van der Maaten L (2016) Densely connected convolutional networks. Preprint arXiv:160806993
go back to reference Huang G, Chen D, Li T, Wu F, van der Maaten L, Weinberger KQ (2017) Multi-scale dense convolutional networks for efficient prediction. Preprint arXiv:170309844 Huang G, Chen D, Li T, Wu F, van der Maaten L, Weinberger KQ (2017) Multi-scale dense convolutional networks for efficient prediction. Preprint arXiv:170309844
go back to reference Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B 42(2):513–529CrossRef Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B 42(2):513–529CrossRef
go back to reference Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K (2016) Squeezenet: alexnet-level accuracy with 50x fewer parameters and <1mb model size. CoRR abs/1602.07360 Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K (2016) Squeezenet: alexnet-level accuracy with 50x fewer parameters and <1mb model size. CoRR abs/1602.07360
go back to reference Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. Preprint:150203167 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. Preprint:150203167
go back to reference Janocha K, Czarnecki WM (2017) On loss functions for deep neural networks in classification. Preprint arXiv:170205659 Janocha K, Czarnecki WM (2017) On loss functions for deep neural networks in classification. Preprint arXiv:170205659
go back to reference Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. Preprint arXiv:14085093 Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. Preprint arXiv:14085093
go back to reference Kingma D, Ba J (2014) Adam: a method for stochastic optimization. ArXiv preprint:14126980 Kingma D, Ba J (2014) Adam: a method for stochastic optimization. ArXiv preprint:14126980
go back to reference Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Technical report Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Technical report
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012a) Imagenet classification with deep convolutional neural networks. In: Proceedings of advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012a) Imagenet classification with deep convolutional neural networks. In: Proceedings of advances in neural information processing systems, pp 1097–1105
go back to reference Le Cun BB, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In: Advances in neural information processing systems, Citeseer Le Cun BB, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In: Advances in neural information processing systems, Citeseer
go back to reference LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2234CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2234CrossRef
go back to reference LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
go back to reference Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. In: European conference on computer vision. Springer, Berlin, pp 740–755 Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. In: European conference on computer vision. Springer, Berlin, pp 740–755
go back to reference Mitchell TM (1997) Machine learning, vol 45(37). McGraw Hill, Burr ridge, IL pp 870–877 Mitchell TM (1997) Machine learning, vol 45(37). McGraw Hill, Burr ridge, IL pp 870–877
go back to reference Moons B, Verhelst M (2016) A 0.3-2.6 tops/w precision-scalable processor for real-time large-scale convnets. In: Proceedings of the IEEE symposium on VLSI circuits, pp 178–179 Moons B, Verhelst M (2016) A 0.3-2.6 tops/w precision-scalable processor for real-time large-scale convnets. In: Proceedings of the IEEE symposium on VLSI circuits, pp 178–179
go back to reference Moons B, Verhelst M (2017) An energy-efficient precision-scalable convnet processor in 40-nm cmos. IEEE J Solid State Circuits 52(4):903–914CrossRef Moons B, Verhelst M (2017) An energy-efficient precision-scalable convnet processor in 40-nm cmos. IEEE J Solid State Circuits 52(4):903–914CrossRef
go back to reference Moons B, De Brabandere B, Van Gool L, Verhelst M (2016) Energy-efficient convnets through approximate computing. In: Proceedings of the IEEE winter conference on applications of computer vision (WACV), pp 1–8 Moons B, De Brabandere B, Van Gool L, Verhelst M (2016) Energy-efficient convnets through approximate computing. In: Proceedings of the IEEE winter conference on applications of computer vision (WACV), pp 1–8
go back to reference Moons B, Goetschalckx K, Van Berckelaer N, Verhelst M (2017a) Minimum energy quantized neural networks. In: Asilomar conference on signals, systems and computers Moons B, Goetschalckx K, Van Berckelaer N, Verhelst M (2017a) Minimum energy quantized neural networks. In: Asilomar conference on signals, systems and computers
go back to reference Moons B, Uytterhoeven R, Dehaene W, Verhelst M (2017b) DVAFS: Trading computational accuracy for energy through dynamic-voltage-accuracy-frequency-scaling. In: 2017 design, automation & test in Europe conference & exhibition (DATE). IEEE, New York, pp 488–493CrossRef Moons B, Uytterhoeven R, Dehaene W, Verhelst M (2017b) DVAFS: Trading computational accuracy for energy through dynamic-voltage-accuracy-frequency-scaling. In: 2017 design, automation & test in Europe conference & exhibition (DATE). IEEE, New York, pp 488–493CrossRef
go back to reference Moons B, Uytterhoeven R, Dehaene W, Verhelst M (2017c) Envision: a 0.26-to-10 tops/w subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28nm FDSOI. In: International solid-state circuits conference (ISSCC) Moons B, Uytterhoeven R, Dehaene W, Verhelst M (2017c) Envision: a 0.26-to-10 tops/w subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28nm FDSOI. In: International solid-state circuits conference (ISSCC)
go back to reference Moons B, Bankman D, Yang L, Murmann B, Verhelst M (2018) Binareye: an always-on energy-accuracy-scalable binary CNN processor with all memory on-chip in 28nm CMOS. In: IEEE custom integrated circuits conference (CICC) Moons B, Bankman D, Yang L, Murmann B, Verhelst M (2018) Binareye: an always-on energy-accuracy-scalable binary CNN processor with all memory on-chip in 28nm CMOS. In: IEEE custom integrated circuits conference (CICC)
go back to reference Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng AY (2011) Reading digits in natural images with unsupervised feature learning. In: NIPS workshop Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng AY (2011) Reading digits in natural images with unsupervised feature learning. In: NIPS workshop
go back to reference Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in Pytorch Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in Pytorch
go back to reference Reagen B, Whatmough P, Adolf R, Rama S, Lee H, Lee SK, Hernandez-Lobato JM, Wei GY, Brooks D (2016) Minerva: enabling low-power, highly-accurate deep neural network accelerators. In: Proceedings of the ACM/IEEE 43rd annual international symposium on computer architecture (ISCA) Reagen B, Whatmough P, Adolf R, Rama S, Lee H, Lee SK, Hernandez-Lobato JM, Wei GY, Brooks D (2016) Minerva: enabling low-power, highly-accurate deep neural network accelerators. In: Proceedings of the ACM/IEEE 43rd annual international symposium on computer architecture (ISCA)
go back to reference Rokach L, Feldman A, Kalech M, Provan G (2012) Machine-learning-based circuit synthesis. In: IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI), 2012. IEEE, New York, pp 1–5 Rokach L, Feldman A, Kalech M, Provan G (2012) Machine-learning-based circuit synthesis. In: IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI), 2012. IEEE, New York, pp 1–5
go back to reference Ruder S (2016) An overview of gradient descent optimization algorithms. Preprint arXiv:160904747 Ruder S (2016) An overview of gradient descent optimization algorithms. Preprint arXiv:160904747
go back to reference Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef
go back to reference Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, et al (2002) Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8(1):68CrossRef Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, et al (2002) Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8(1):68CrossRef
go back to reference Simonyan K, Zisserman A (2014a) Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 Simonyan K, Zisserman A (2014a) Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556
go back to reference Simonyan K, Zisserman A (2014b) Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 Simonyan K, Zisserman A (2014b) Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556
go back to reference Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH
go back to reference Sze V, Yang TJ, Chen YH (2017) Designing energy-efficient convolutional neural networks using energy-aware pruning. CVPR Sze V, Yang TJ, Chen YH (2017) Designing energy-efficient convolutional neural networks using energy-aware pruning. CVPR
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
go back to reference Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI, pp 4278–4284 Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI, pp 4278–4284
go back to reference Tieleman T, Hinton G (2012) Rmsprop: Divide the gradient by a running average of its recent magnitude. coursera: neural networks for machine learning. Technical report Tieleman T, Hinton G (2012) Rmsprop: Divide the gradient by a running average of its recent magnitude. coursera: neural networks for machine learning. Technical report
go back to reference Van Keirsbilck M, Moons B, Verhelst M (2018) Resource aware design of a deep convolutional-recurrent neural network for speech recognition through audio-visual sensor fusion. Arxiv Van Keirsbilck M, Moons B, Verhelst M (2018) Resource aware design of a deep convolutional-recurrent neural network for speech recognition through audio-visual sensor fusion. Arxiv
go back to reference Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408MathSciNetMATH Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408MathSciNetMATH
go back to reference Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, New York, pp 5987–5995 Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, New York, pp 5987–5995
go back to reference Yang L, Bankman D, Moons B, Verhelst M, Murmann B (2018) Bit error tolerance of a CIFAR-10 binarized convolutional neural network processor. In: IEEE international symposium on circuits and systems (ISCAS) Yang L, Bankman D, Moons B, Verhelst M, Murmann B (2018) Bit error tolerance of a CIFAR-10 binarized convolutional neural network processor. In: IEEE international symposium on circuits and systems (ISCAS)
go back to reference Zagoruyko S, Komodakis N (2016) Wide residual networks. Preprint arXiv:160507146 Zagoruyko S, Komodakis N (2016) Wide residual networks. Preprint arXiv:160507146
go back to reference Ze H, Senior A, Schuster M (2013) Statistical parametric speech synthesis using deep neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, New York, pp 7962–7966CrossRef Ze H, Senior A, Schuster M (2013) Statistical parametric speech synthesis using deep neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, New York, pp 7962–7966CrossRef
Metadata
Title
Embedded Deep Neural Networks
Authors
Bert Moons
Daniel Bankman
Marian Verhelst
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-99223-5_1