Skip to main content
Top

2019 | OriginalPaper | Chapter

34. Emerging Applications of Cellulose Nanofibers

Authors : Ahmed Barhoum, Haoyi Li, Mingjun Chen, Lisheng Cheng, Weimin Yang, Alain Dufresne

Published in: Handbook of Nanofibers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cellulose is the most abundant biopolymer on Earth. In addition, it is renewable, biodegradable, and relatively cheap. Cellulose nanofibers (CNFs) have been produced most commonly from plants, algae, and bacteria. They can be isolated, e.g., from wood-derived fibers that have been microrefined to microlevel and even to nanolevel. In this chapter, we comprehensively review the unique properties and emerging applications of CNFs. We anticipate that CNFs as a new environmentally friendly material will be widely used in many areas such as reinforcement of polymers, energy production and energy storage, environmental protection and improvement, and healthcare. Therefore, there is a necessary to do more research on the potential emerging applications of CNFs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT Food Sci Technol 59:1311–1318CrossRef Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT Food Sci Technol 59:1311–1318CrossRef
2.
go back to reference Jawaid M, Mohammad F (2017) 1. Application of nanocellulose for controlled drug delivery. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Jawaid M, Mohammad F (2017) 1. Application of nanocellulose for controlled drug delivery. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3.
go back to reference Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76CrossRef Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76CrossRef
4.
go back to reference Frone AN, Panaitescu DM, Dan D, Spataru CI (2011) Preparation, and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. J Appl Polym Sci 110:2854–2861 Frone AN, Panaitescu DM, Dan D, Spataru CI (2011) Preparation, and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. J Appl Polym Sci 110:2854–2861
5.
go back to reference Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
6.
go back to reference Frone AN, Panaitescu DM, Dan D (2011) Some aspects concerning the isolation of cellulose micro- and nano-fibers. Upb Scientific Bulletin 73:133–152 Frone AN, Panaitescu DM, Dan D (2011) Some aspects concerning the isolation of cellulose micro- and nano-fibers. Upb Scientific Bulletin 73:133–152
7.
go back to reference Cheng Q, Wang S, Rials TG (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high-intensity ultrasonication. Compos A: Appl Sci Manuf 40:218–224CrossRef Cheng Q, Wang S, Rials TG (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high-intensity ultrasonication. Compos A: Appl Sci Manuf 40:218–224CrossRef
8.
go back to reference Tibolla H, Pelissari FM, Martins JT, Vicente AA, Menegalli FC (2017) Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: characterization and cytotoxicity assessment. Food Hydrocolloids 75(2018):192–201CrossRef Tibolla H, Pelissari FM, Martins JT, Vicente AA, Menegalli FC (2017) Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: characterization and cytotoxicity assessment. Food Hydrocolloids 75(2018):192–201CrossRef
9.
go back to reference Fillat Ú, Wicklein B, Martín-Sampedro R, Ibarra D, Ruiz-Hitzky E, Valencia C, Sarrión A, Castro E, Eugenio ME (2018) Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydr Polym 179:252CrossRef Fillat Ú, Wicklein B, Martín-Sampedro R, Ibarra D, Ruiz-Hitzky E, Valencia C, Sarrión A, Castro E, Eugenio ME (2018) Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydr Polym 179:252CrossRef
10.
go back to reference Mukwaya V, Yu W, Asad RAM, Yagoub H (1978) An environmentally friendly method for the isolation of cellulose nano fibrils from banana rachis fibers. Norton 87(1):2017CrossRef Mukwaya V, Yu W, Asad RAM, Yagoub H (1978) An environmentally friendly method for the isolation of cellulose nano fibrils from banana rachis fibers. Norton 87(1):2017CrossRef
11.
go back to reference Barhoum A, Samyn P, Öhlund T, Dufresne A (2017) Review of recent research on flexible multifunctional nanopapers. Nanoscale 9(40):15181–15205CrossRef Barhoum A, Samyn P, Öhlund T, Dufresne A (2017) Review of recent research on flexible multifunctional nanopapers. Nanoscale 9(40):15181–15205CrossRef
13.
go back to reference Ioelovich M (2014) Peculiarities of cellulose nanoparticles. TAPPI J 13:45–51 Ioelovich M (2014) Peculiarities of cellulose nanoparticles. TAPPI J 13:45–51
14.
go back to reference George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54CrossRef George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54CrossRef
15.
go back to reference White MS, Kaltenbrunner M, Głowacki ED, Gutnichenko K, Kettlgruber G, Graz I, Aazou S, Ulbricht C, Egbe DAM, Miron MC (2013) Ultrathin, highly flexible and stretchable PLEDs. Nat Photonics 7:811–816CrossRef White MS, Kaltenbrunner M, Głowacki ED, Gutnichenko K, Kettlgruber G, Graz I, Aazou S, Ulbricht C, Egbe DAM, Miron MC (2013) Ultrathin, highly flexible and stretchable PLEDs. Nat Photonics 7:811–816CrossRef
16.
go back to reference Li Z, Yao C, Wang F, Cai Z, Wang X (2014) Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode. Nanotechnology 25:504005CrossRef Li Z, Yao C, Wang F, Cai Z, Wang X (2014) Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode. Nanotechnology 25:504005CrossRef
17.
go back to reference Huang Y, Zheng M, Lin Z, Zhao B, Zhang S, Yang J, Zhu C, Zhang H, Sun D, Shi Y (2015) Flexible cathode and multifunctional interlayer based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries. J Mater Chem A 3:10910–10918CrossRef Huang Y, Zheng M, Lin Z, Zhao B, Zhang S, Yang J, Zhu C, Zhang H, Sun D, Shi Y (2015) Flexible cathode and multifunctional interlayer based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries. J Mater Chem A 3:10910–10918CrossRef
18.
go back to reference Tammela P, Wang Z, Frykstrand S, Zhang P, Sintorn IM, Nyholm L, Stromme M (2015) Asymmetric supercapacitors based on carbon nanofibre and polypyrrole/nanocellulose composite electrodes. RSC Adv 5:16405–16413CrossRef Tammela P, Wang Z, Frykstrand S, Zhang P, Sintorn IM, Nyholm L, Stromme M (2015) Asymmetric supercapacitors based on carbon nanofibre and polypyrrole/nanocellulose composite electrodes. RSC Adv 5:16405–16413CrossRef
19.
go back to reference Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1CrossRef Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1CrossRef
20.
go back to reference Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106CrossRef Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106CrossRef
21.
go back to reference Qua EH, Hornsby PR, Sharma HSS, Lyons G, Mccall RD (2009) Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113:2238–2247CrossRef Qua EH, Hornsby PR, Sharma HSS, Lyons G, Mccall RD (2009) Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113:2238–2247CrossRef
22.
go back to reference Pelissari FM, Andrade-Mahecha MM, Pjda S, Menegalli FC (2017) Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J Colloid Interface Sci 505:154–167CrossRef Pelissari FM, Andrade-Mahecha MM, Pjda S, Menegalli FC (2017) Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J Colloid Interface Sci 505:154–167CrossRef
23.
go back to reference Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. Appl Mater Interfaces 5:2999–3009CrossRef Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. Appl Mater Interfaces 5:2999–3009CrossRef
24.
go back to reference Boufi S, González I, Delgadoaguilar M, Tarrès Q, Pèlach MÀ, Mutjé P (2016) Nanofibrillated cellulose as an additive in papermaking process: a review. Carbohydr Polym 154:151CrossRef Boufi S, González I, Delgadoaguilar M, Tarrès Q, Pèlach MÀ, Mutjé P (2016) Nanofibrillated cellulose as an additive in papermaking process: a review. Carbohydr Polym 154:151CrossRef
25.
go back to reference Abdulkhani A, Hosseinzadeh J, Ashori A, Dadashi S, Takzare Z (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79CrossRef Abdulkhani A, Hosseinzadeh J, Ashori A, Dadashi S, Takzare Z (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79CrossRef
26.
go back to reference Kar KK, Pandey JK, Rana S (2015) Handbook of polymer nanocomposites. Processing, performance and application. Springer Berlin Heidelberg, BerlinCrossRef Kar KK, Pandey JK, Rana S (2015) Handbook of polymer nanocomposites. Processing, performance and application. Springer Berlin Heidelberg, BerlinCrossRef
27.
go back to reference Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 102:822–828CrossRef Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 102:822–828CrossRef
28.
go back to reference Soni B, Hassan EB, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134:581–589CrossRef Soni B, Hassan EB, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134:581–589CrossRef
29.
go back to reference Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 97:190–200CrossRef Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 97:190–200CrossRef
30.
go back to reference Wicklein B, Kocjan A, Salazaralvarez G, Carosio F, Camino G, Antonietti M, Bergström L (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10:277CrossRef Wicklein B, Kocjan A, Salazaralvarez G, Carosio F, Camino G, Antonietti M, Bergström L (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10:277CrossRef
31.
go back to reference Ho TTT, Zimmermann T, Ohr S, Caseri WR (2012) Composites of cationic nanofibrillated cellulose and layered silicates: water vapor barrier and mechanical properties. ACS Appl Mater Interfaces 4:4832–4840CrossRef Ho TTT, Zimmermann T, Ohr S, Caseri WR (2012) Composites of cationic nanofibrillated cellulose and layered silicates: water vapor barrier and mechanical properties. ACS Appl Mater Interfaces 4:4832–4840CrossRef
32.
go back to reference Chao W, Ye X, Fan B, Yao Q, Wang H, Jin C, Sun Q (2015) Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, sound-absorption and thermal iInsulation. Sci Rep 6:32383 Chao W, Ye X, Fan B, Yao Q, Wang H, Jin C, Sun Q (2015) Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, sound-absorption and thermal iInsulation. Sci Rep 6:32383
33.
go back to reference Samyn P, Barhoum A, Öhlund T, Dufresne A (2018) Review: nanoparticles and nanostructured materials in papermaking. J Mater Sci 53:146–184CrossRef Samyn P, Barhoum A, Öhlund T, Dufresne A (2018) Review: nanoparticles and nanostructured materials in papermaking. J Mater Sci 53:146–184CrossRef
34.
go back to reference Barhoum A, Samyn P, Öhlund T, Dufresne A (2017) Review of recent research on flexible multifunctional nanopapers. Nanoscale 9:15181–15205CrossRef Barhoum A, Samyn P, Öhlund T, Dufresne A (2017) Review of recent research on flexible multifunctional nanopapers. Nanoscale 9:15181–15205CrossRef
35.
go back to reference Luu WT, Bousfield DW, Kettle J (2011) Application of nano-fibrillated cellulose as a paper surface treatment for inkjet printing papercon 2011, pp 2222–2233 Luu WT, Bousfield DW, Kettle J (2011) Application of nano-fibrillated cellulose as a paper surface treatment for inkjet printing papercon 2011, pp 2222–2233
36.
go back to reference Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain Chem Process 2:1–7CrossRef Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain Chem Process 2:1–7CrossRef
37.
go back to reference Carosio F, Cuttica F, Medina L, Berglund LA (2016) Clay nanopaper as multifunctional brick and mortar fire protection coating–wood case study. Mater Des 93:357–363CrossRef Carosio F, Cuttica F, Medina L, Berglund LA (2016) Clay nanopaper as multifunctional brick and mortar fire protection coating–wood case study. Mater Des 93:357–363CrossRef
38.
go back to reference Li S, Lee PS (2017) Development and applications of transparent conductive nanocellulose paper. Sci Technol Adv Mater 18:620–633CrossRef Li S, Lee PS (2017) Development and applications of transparent conductive nanocellulose paper. Sci Technol Adv Mater 18:620–633CrossRef
39.
go back to reference Mao R, Goutianos S, Tu W, Meng N, Yang G, Berglund LA, Peijs T (2017) Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper. J Mater Sci 52:9508–9519CrossRef Mao R, Goutianos S, Tu W, Meng N, Yang G, Berglund LA, Peijs T (2017) Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper. J Mater Sci 52:9508–9519CrossRef
40.
go back to reference Nogi M, Iwamoto S, Nakagaito AN, Yano H (2010) Optically transparent nanofiber paper&nbsp. Adv Mater 21:1595–1598CrossRef Nogi M, Iwamoto S, Nakagaito AN, Yano H (2010) Optically transparent nanofiber paper&nbsp. Adv Mater 21:1595–1598CrossRef
41.
go back to reference Lee B-H, Lee D-I, Bae H, Seong H, Jeon S-B, Seol M-L, Han J-W, Meyyappan M, Im S-G, Choi Y-K (2016) Foldable and disposable memory on paper. Sci Rep 6:38389CrossRef Lee B-H, Lee D-I, Bae H, Seong H, Jeon S-B, Seol M-L, Han J-W, Meyyappan M, Im S-G, Choi Y-K (2016) Foldable and disposable memory on paper. Sci Rep 6:38389CrossRef
42.
go back to reference Zhong L (2010) Study on the properties of paper diaphragm improved by bacterial cellulose. China Pulp & Paper 29:31–33 Zhong L (2010) Study on the properties of paper diaphragm improved by bacterial cellulose. China Pulp & Paper 29:31–33
43.
go back to reference Fei H, Saha N, Kazantseva N, Moucka R, Cheng Q, Saha P (2017) A highly flexible supercapacitor based on MnO2/RGO nanosheets and bacterial cellulose-filled gel electrolyte. Materials 10:1251CrossRef Fei H, Saha N, Kazantseva N, Moucka R, Cheng Q, Saha P (2017) A highly flexible supercapacitor based on MnO2/RGO nanosheets and bacterial cellulose-filled gel electrolyte. Materials 10:1251CrossRef
44.
go back to reference Leijonmarck S, Cornell A, Lindbergh G, Wagberg L (2013) Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J Mater Chem A 1:4671–4677CrossRef Leijonmarck S, Cornell A, Lindbergh G, Wagberg L (2013) Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J Mater Chem A 1:4671–4677CrossRef
45.
go back to reference Huang Y, Lin Z, Zheng M, Wang T, Yang J, Yuan F, Lu X, Liu L, Sun D (2016) Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J Power Sources 307:649–656CrossRef Huang Y, Lin Z, Zheng M, Wang T, Yang J, Yuan F, Lu X, Liu L, Sun D (2016) Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J Power Sources 307:649–656CrossRef
46.
go back to reference Liu S, Zheng Y, Sun Y, Su L, Yue L, Wang Y, Feng J, Fan J (2016) An oxygen tolerance conductive hydrogel anode membrane in potentially implantable glucose fuel cell. RSC Adv 6:112971–112980CrossRef Liu S, Zheng Y, Sun Y, Su L, Yue L, Wang Y, Feng J, Fan J (2016) An oxygen tolerance conductive hydrogel anode membrane in potentially implantable glucose fuel cell. RSC Adv 6:112971–112980CrossRef
47.
go back to reference Masaya N, Makoto K, Natsuki K, Hitomi Y, Thi NT (2015) Transparent conductive nanofiber paper for foldable solar cells. Sci Rep 5:17254CrossRef Masaya N, Makoto K, Natsuki K, Hitomi Y, Thi NT (2015) Transparent conductive nanofiber paper for foldable solar cells. Sci Rep 5:17254CrossRef
48.
go back to reference Xu X, Zhou J, Xin Y, Lubineau G, Ma Q, Jiang L (2017) Alcohol recognition by flexible, transparent and highly sensitive graphene-based thin-film sensors. Sci Rep 7:4317CrossRef Xu X, Zhou J, Xin Y, Lubineau G, Ma Q, Jiang L (2017) Alcohol recognition by flexible, transparent and highly sensitive graphene-based thin-film sensors. Sci Rep 7:4317CrossRef
50.
go back to reference He W, Tian J, Li J, Jin H, Li Y (2016) Characterization and properties of cellulose nanofiber/polyaniline film composites synthesized through in situ polymerization. BioRes 11(4):8535–8547 He W, Tian J, Li J, Jin H, Li Y (2016) Characterization and properties of cellulose nanofiber/polyaniline film composites synthesized through in situ polymerization. BioRes 11(4):8535–8547
51.
go back to reference Pang Z, Yang Z, Chen Y, Zhang J, Wang Q, Huang F, Wei Q (2016) A room temperature ammonia gas sensor based on cellulose/TiO 2/PANI composite nanofibers. Colloids Surf A Physicochem Eng Asp 494:248–255CrossRef Pang Z, Yang Z, Chen Y, Zhang J, Wang Q, Huang F, Wei Q (2016) A room temperature ammonia gas sensor based on cellulose/TiO 2/PANI composite nanofibers. Colloids Surf A Physicochem Eng Asp 494:248–255CrossRef
52.
go back to reference Qin J, Chen L, Zhao C, Lin Q, Chen S (2017) Cellulose nanofiber/cationic conjugated polymer hybrid aerogel sensor for nitroaromatic vapors detection. J Mater Sci 52:8455–8464CrossRef Qin J, Chen L, Zhao C, Lin Q, Chen S (2017) Cellulose nanofiber/cationic conjugated polymer hybrid aerogel sensor for nitroaromatic vapors detection. J Mater Sci 52:8455–8464CrossRef
53.
go back to reference Gao K, Shao Z, Wu X, Wang X, Li J, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydr Polym 97:243–251CrossRef Gao K, Shao Z, Wu X, Wang X, Li J, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydr Polym 97:243–251CrossRef
54.
go back to reference Ma H, Burger C, Hsiao BS, Chu B (2011) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mater Chem 21:7507–7510CrossRef Ma H, Burger C, Hsiao BS, Chu B (2011) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mater Chem 21:7507–7510CrossRef
55.
go back to reference Vipin AK, Fugetsu B, Sakata I, Isogai A, Endo M, Li M, Dresselhaus MS (2017) Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Sci Rep 6:37009CrossRef Vipin AK, Fugetsu B, Sakata I, Isogai A, Endo M, Li M, Dresselhaus MS (2017) Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Sci Rep 6:37009CrossRef
56.
go back to reference Ma H, Hsiao BS, Chu B (2012) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water. ACS Macro Lett 1:213–216CrossRef Ma H, Hsiao BS, Chu B (2012) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water. ACS Macro Lett 1:213–216CrossRef
57.
go back to reference Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69:1958–1961CrossRef Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69:1958–1961CrossRef
58.
go back to reference Nogi M (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRef Nogi M (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRef
59.
go back to reference Nakagaito AN, Nogi M, Yano H (2010) Displays from transparent film of natural nanofibers. MRS Bull 35:214–218CrossRef Nakagaito AN, Nogi M, Yano H (2010) Displays from transparent film of natural nanofibers. MRS Bull 35:214–218CrossRef
60.
go back to reference Sabo R, Seo JH, Ma Z (2012) Cellulose nanofiber composite substrates for flexible electronics. In: 2012 TAPPI international conference on nanotechnology for renewable materials, Montreal, 4–7 June 2012, pp 60–69 Sabo R, Seo JH, Ma Z (2012) Cellulose nanofiber composite substrates for flexible electronics. In: 2012 TAPPI international conference on nanotechnology for renewable materials, Montreal, 4–7 June 2012, pp 60–69
61.
go back to reference Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811CrossRef Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811CrossRef
62.
go back to reference Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980 Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980
63.
go back to reference Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71CrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71CrossRef
64.
go back to reference Ou Y, Chen J, Lu P, Cheng F, Lin M, Su L, Li J, Liu D (2017) Rapid ILs-polishing processes toward flexible nanostructured paper with dually high transparency and haze. Sci Rep 7:6943CrossRef Ou Y, Chen J, Lu P, Cheng F, Lin M, Su L, Li J, Liu D (2017) Rapid ILs-polishing processes toward flexible nanostructured paper with dually high transparency and haze. Sci Rep 7:6943CrossRef
65.
go back to reference Jung YH, Chang TH, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park DW (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170CrossRef Jung YH, Chang TH, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park DW (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170CrossRef
66.
go back to reference Nagashima K, Koga H, Celano U, Zhuge F, Kanai M, Rahong S, Meng G, He Y, Boeck JD, Jurczak M (2014) Cellulose nanofiber paper as an ultra flexible nonvolatile memory. Sci Rep 4:5532CrossRef Nagashima K, Koga H, Celano U, Zhuge F, Kanai M, Rahong S, Meng G, He Y, Boeck JD, Jurczak M (2014) Cellulose nanofiber paper as an ultra flexible nonvolatile memory. Sci Rep 4:5532CrossRef
67.
go back to reference Rohrbach K, Li Y, Zhu H, Liu Z, Dai J, Andreasen J, Hu L (2014) A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chem Commun 50:13296–13299CrossRef Rohrbach K, Li Y, Zhu H, Liu Z, Dai J, Andreasen J, Hu L (2014) A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chem Commun 50:13296–13299CrossRef
68.
go back to reference Mushtaq S, Yun SJ, Yang JE, Jeong SW, Shim HE, Mi HC, Sang HP, Yong JC, Jeon J (2017) Efficient and selective removal of radioactive iodine anions using engineered nanocomposite membranes. Environ Sci Nano 4(11):2157–2163CrossRef Mushtaq S, Yun SJ, Yang JE, Jeong SW, Shim HE, Mi HC, Sang HP, Yong JC, Jeon J (2017) Efficient and selective removal of radioactive iodine anions using engineered nanocomposite membranes. Environ Sci Nano 4(11):2157–2163CrossRef
69.
go back to reference Ruso JM, Messina PV (2016) Biopolymers for medical applications. CRC Press, Boca Raton Ruso JM, Messina PV (2016) Biopolymers for medical applications. CRC Press, Boca Raton
70.
go back to reference Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRef Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRef
71.
go back to reference Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96CrossRef Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96CrossRef
72.
go back to reference Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRef Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRef
73.
go back to reference Niu T, Xu J, Xiao W, Huang J (2014) Cellulose-based catalytic membranes fabricated by deposition of gold nanoparticles on natural cellulose nanofibres. RSC Adv 4:4901–4904CrossRef Niu T, Xu J, Xiao W, Huang J (2014) Cellulose-based catalytic membranes fabricated by deposition of gold nanoparticles on natural cellulose nanofibres. RSC Adv 4:4901–4904CrossRef
Metadata
Title
Emerging Applications of Cellulose Nanofibers
Authors
Ahmed Barhoum
Haoyi Li
Mingjun Chen
Lisheng Cheng
Weimin Yang
Alain Dufresne
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-53655-2_53

Premium Partners