Skip to main content
Top

2020 | OriginalPaper | Chapter

Emerging Life Sciences: New Challenges to Strategic Stability

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter explores the potential for new biotechnologically-enabled weapons to compete with nuclear weapons as far as effect on strategic stability, and assesses whether the assumptions in traditional strategic stability models are still valid when applied to such scenarios, and how changing capabilities and adversaries may shape approaches to arms control, verification, and monitoring. When thinking about biotechnology from a security perspective, anticipating the types of security threats that may emerge as science and technology advance, the potential consequences of those threats, the probability that adversaries will obtain or pursue them, adversarial intent, and potential effect on strategic stability is necessary. The range and spectrum of possible capabilities and actors are expanding. The most recent addition to the genome-editing arsenal is CRISPR, a bacteria-derived system that is among the simplest genome-editing tools. The CRISPR-Cas9 system—and emerging variants on the system—enables unprecedented control and ease when editing the genome. With parallels to remote ‘command and control’ of the genome, this is one aspect that makes the technology different from earlier gene-editing methods. Contemporary analyses of emerging technologies often expose tenuous links or disconnections between technical realities and mainstream scholarship. How, when, where, and in what form the shifting nature of technological progress may bring enhanced or entirely new capabilities, many of which are no longer the exclusive domain of a single nation-state, is contested and requires better analytical tools to enable assessment and inform policy choices. This work is hardly the only one to consider the biosecurity implications of CRISPR, gene-editing, and broader issues of biotechnology. As far as is known, it is the only one to address these emerging life sciences technologies in the context of nuclear strategic stability and implications for balance of power, arms control, and international security.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
“New scientific and technological developments relevant to the Convention: Some examples,” BWC Preparatory Committee, Eighth Review Conference of the States Parties to the Convention on the Prohibition of the Development, Production and Stockpiling of Bacteriological (Biological) and Toxin Weapons and on Their Destruction, BWC/CONF.VIII/PC/WP.18, August 5, 2016.
 
2
For example, see [1014].
 
3
For an excellent overview of the CRISPR-Cas9 system by two of the discovers, see [31].
 
Literature
1.
go back to reference Rennstich KJ (2008) The making of a digital world: the evolution of technological change and how it shaped our world. Palgrave MacMillan, New YorkCrossRef Rennstich KJ (2008) The making of a digital world: the evolution of technological change and how it shaped our world. Palgrave MacMillan, New YorkCrossRef
3.
go back to reference Biotechnology Research in an Age of Terrorism. National Academies Press, Washington, D.C. (2004) Biotechnology Research in an Age of Terrorism. National Academies Press, Washington, D.C. (2004)
4.
go back to reference Globalization, Biosecurity, and the Future of the Life Sciences. National Academies Press, Washington, D.C. (2006) Globalization, Biosecurity, and the Future of the Life Sciences. National Academies Press, Washington, D.C. (2006)
8.
go back to reference Reeves RG et al (2018) Agricultural research, or a new bioweapon system? Science 362(6410):35–37CrossRef Reeves RG et al (2018) Agricultural research, or a new bioweapon system? Science 362(6410):35–37CrossRef
10.
go back to reference Vogel KM, Ouagrham-Gormley SB (2018) Anticipating emerging biotechnology threats: a case study of CRISPR. Polit Life Sci 37(2):203–219CrossRef Vogel KM, Ouagrham-Gormley SB (2018) Anticipating emerging biotechnology threats: a case study of CRISPR. Polit Life Sci 37(2):203–219CrossRef
11.
go back to reference Gronvall G (2018) The security implications of synthetic biology. Survival 60(4):165–180CrossRef Gronvall G (2018) The security implications of synthetic biology. Survival 60(4):165–180CrossRef
12.
13.
go back to reference Koblentz GD (2004) Pathogens as weapons: the international security implications of biological warfare. Int Secur 29(1):84–122CrossRef Koblentz GD (2004) Pathogens as weapons: the international security implications of biological warfare. Int Secur 29(1):84–122CrossRef
14.
go back to reference Peterson S (2002) Epidemic disease and national security. Secur Stud 12(2):43–81CrossRef Peterson S (2002) Epidemic disease and national security. Secur Stud 12(2):43–81CrossRef
15.
go back to reference Elbe S (2002) HIV/AIDS and the changing landscape of war in Africa. Int Secur 27(2):159–177CrossRef Elbe S (2002) HIV/AIDS and the changing landscape of war in Africa. Int Secur 27(2):159–177CrossRef
16.
go back to reference McInnes C, Lee Kelley (2006) Health, security and foreign policy. Rev Int Stud 32:5–23CrossRef McInnes C, Lee Kelley (2006) Health, security and foreign policy. Rev Int Stud 32:5–23CrossRef
17.
go back to reference Letendre K, Fincher CL, Thornhill R (2010) Does infectious disease cause global variation in the frequency of intrastate armed conflict and civil war? Biol Rev 85(3):669–683 Letendre K, Fincher CL, Thornhill R (2010) Does infectious disease cause global variation in the frequency of intrastate armed conflict and civil war? Biol Rev 85(3):669–683
18.
go back to reference Waddington C (2014) Ebola outbreak in Guinea: a different type of regional stability threat. Africa Confl Monthly Monit 2014(5):47–51 Waddington C (2014) Ebola outbreak in Guinea: a different type of regional stability threat. Africa Confl Monthly Monit 2014(5):47–51
19.
go back to reference Heymann DL et al (2015) Global health security: the wider lessons from the west African Ebola virus disease epidemic. Lancet 385(9980):1805–1806CrossRef Heymann DL et al (2015) Global health security: the wider lessons from the west African Ebola virus disease epidemic. Lancet 385(9980):1805–1806CrossRef
20.
go back to reference Omoleke SA, Mohammed I, Saidu Y (2016) Ebola viral disease in West Africa: a threat to global health, economy and political stability. J Public Health Africa 7(1):27–40 Omoleke SA, Mohammed I, Saidu Y (2016) Ebola viral disease in West Africa: a threat to global health, economy and political stability. J Public Health Africa 7(1):27–40
21.
go back to reference Kalra S et al (2014) The emergence of Ebola as a global health security threat: from ‘Lessons Learned’ to coordinated multilateral containment efforts. J Glob Infect Dis 6(4): 164–177 Kalra S et al (2014) The emergence of Ebola as a global health security threat: from ‘Lessons Learned’ to coordinated multilateral containment efforts. J Glob Infect Dis 6(4): 164–177
22.
go back to reference Jackson RJ et al (2001) Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J Virol 75:1205–1210CrossRef Jackson RJ et al (2001) Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J Virol 75:1205–1210CrossRef
23.
go back to reference Chen N et al (2011) Poxvirus interleukin-4 expression overcomes inherent resistance and vaccine-induced immunity: pathogenesis, prophylaxis, and antiviral therapy. Virology 409(2):328–337CrossRef Chen N et al (2011) Poxvirus interleukin-4 expression overcomes inherent resistance and vaccine-induced immunity: pathogenesis, prophylaxis, and antiviral therapy. Virology 409(2):328–337CrossRef
25.
go back to reference Guerra FM et al (2017) The basic reproduction number (R0) of measles: a systematic review. Lancet 17(12):e420–e428CrossRef Guerra FM et al (2017) The basic reproduction number (R0) of measles: a systematic review. Lancet 17(12):e420–e428CrossRef
26.
go back to reference Fine PE (1993) Herd immunity: history, theory, practice. Epid Rev 15:265–302CrossRef Fine PE (1993) Herd immunity: history, theory, practice. Epid Rev 15:265–302CrossRef
27.
go back to reference Wallinga J, Lévy-Bruhl D, Gay NJ, Wachmann CH (2001) Estimation of measles reproduction ratios and prospects for elimination of measles by vaccination in some western European countries. Epid Infect 127:281–295CrossRef Wallinga J, Lévy-Bruhl D, Gay NJ, Wachmann CH (2001) Estimation of measles reproduction ratios and prospects for elimination of measles by vaccination in some western European countries. Epid Infect 127:281–295CrossRef
28.
go back to reference Porteus M (2006) Mammalian gene targeting with designed zinc finger nucleases. Mol Ther 13:438–446CrossRef Porteus M (2006) Mammalian gene targeting with designed zinc finger nucleases. Mol Ther 13:438–446CrossRef
29.
go back to reference Mansilla-Soto J, Riviere I, Boulad F et al (2016) Cell and gene therapy for the beta-thalassemias: advances and prospects. Hum Gene Ther 27(4): 295–304CrossRef Mansilla-Soto J, Riviere I, Boulad F et al (2016) Cell and gene therapy for the beta-thalassemias: advances and prospects. Hum Gene Ther 27(4): 295–304CrossRef
30.
go back to reference Jo Yi, Kim H, Ramakrishna S (2015) Recent developments and clinical studies utilizing engineered zinc finger nuclease technology. Cell Mol Life Sci 72(20):3819–3830CrossRef Jo Yi, Kim H, Ramakrishna S (2015) Recent developments and clinical studies utilizing engineered zinc finger nuclease technology. Cell Mol Life Sci 72(20):3819–3830CrossRef
31.
go back to reference Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1077–1088CrossRef Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1077–1088CrossRef
32.
go back to reference Ran FA et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191CrossRef Ran FA et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191CrossRef
33.
go back to reference Zetsche B et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system. Cell 163(3):759–771CrossRef Zetsche B et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system. Cell 163(3):759–771CrossRef
34.
go back to reference Fonfara I et al (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521CrossRef Fonfara I et al (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521CrossRef
35.
go back to reference McKenna A et al (2016) Whole organism lineage tracing by combinatorial and cumulative genome editing. Science 353(6298):aaf7907-11CrossRef McKenna A et al (2016) Whole organism lineage tracing by combinatorial and cumulative genome editing. Science 353(6298):aaf7907-11CrossRef
36.
go back to reference Yoshimi K, Kaneko T, Voigt B, Mashimo T (2014) Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-cas platform. Nat Commun 5(4240):1–9 Yoshimi K, Kaneko T, Voigt B, Mashimo T (2014) Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-cas platform. Nat Commun 5(4240):1–9
37.
go back to reference Heo TY et al (2015) CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem Cells Dev 24:393–402CrossRef Heo TY et al (2015) CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem Cells Dev 24:393–402CrossRef
38.
go back to reference Han H et al (2014) One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system. Front Agric Sci Eng 1: 2–15 Han H et al (2014) One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system. Front Agric Sci Eng 1: 2–15
41.
go back to reference Liang P et al (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6(5):363–372CrossRef Liang P et al (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6(5):363–372CrossRef
42.
go back to reference Cyranoski D, Reardon S (2015) Embryo editing sparks epic debate. Nature 520:593–595CrossRef Cyranoski D, Reardon S (2015) Embryo editing sparks epic debate. Nature 520:593–595CrossRef
43.
go back to reference Normile D (2018) Shock greets claim of CRISPR-edited babies. Science 362(6418):978–979CrossRef Normile D (2018) Shock greets claim of CRISPR-edited babies. Science 362(6418):978–979CrossRef
46.
go back to reference O’Green H, Abigail S, Sega DJ (2015) How specific is CRISPR/Cas9 really?. Curr Opin Chem Biol 29:72–78 O’Green H, Abigail S, Sega DJ (2015) How specific is CRISPR/Cas9 really?. Curr Opin Chem Biol 29:72–78
47.
go back to reference Tsai SQ et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197CrossRef Tsai SQ et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197CrossRef
48.
go back to reference Chapman JE, Gillum D, Kiani S (2017) Approaches to reduce CRISPR off-target effects for safer genome editing. Appl Biosaf J ABSA Int 22(1):7–13CrossRef Chapman JE, Gillum D, Kiani S (2017) Approaches to reduce CRISPR off-target effects for safer genome editing. Appl Biosaf J ABSA Int 22(1):7–13CrossRef
50.
go back to reference Wei X, Nielsen R (2019) CCR52-∆32 is deleterious in the homozygous state in humans. Nat Med 25:909–910CrossRef Wei X, Nielsen R (2019) CCR52-∆32 is deleterious in the homozygous state in humans. Nat Med 25:909–910CrossRef
51.
go back to reference Zhou M et al (2016) CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. eLife 20(5):e20985 Zhou M et al (2016) CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. eLife 20(5):e20985
52.
go back to reference Joy MT et al (2019) CCR54 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 176(5):1143–1157CrossRef Joy MT et al (2019) CCR54 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 176(5):1143–1157CrossRef
55.
go back to reference Martin S (2002) The role of biological weapons in international politics: the real military revolution. J Strateg Stud 25(1):76 Martin S (2002) The role of biological weapons in international politics: the real military revolution. J Strateg Stud 25(1):76
58.
go back to reference Kosal ME (2018) WMD strategy gap: capacities, capabilities, and collaboration. PRISM 7(3):50–67 Kosal ME (2018) WMD strategy gap: capacities, capabilities, and collaboration. PRISM 7(3):50–67
59.
go back to reference Smithson Amy E (1999) Tall order: crafting a meaningful verification protocol for the biological weapons convention. Polit Life Sci 18(1):79–85CrossRef Smithson Amy E (1999) Tall order: crafting a meaningful verification protocol for the biological weapons convention. Polit Life Sci 18(1):79–85CrossRef
60.
go back to reference Littlewood J (2005) The biological weapons convention: a failed revolution. Ashgate Publishing, Aldershot Littlewood J (2005) The biological weapons convention: a failed revolution. Ashgate Publishing, Aldershot
61.
go back to reference Littlewood J (2012) The biological weapons convention. In: Faure G (ed) Unfinished business: why international negotiations fail. University of Georgia Press, Athens, pp 107–129 Littlewood J (2012) The biological weapons convention. In: Faure G (ed) Unfinished business: why international negotiations fail. University of Georgia Press, Athens, pp 107–129
63.
go back to reference Hart J, Trapp R (2012) Science, technology, and the biological weapons convention. Arms Control Today 42(8):15–21 Hart J, Trapp R (2012) Science, technology, and the biological weapons convention. Arms Control Today 42(8):15–21
65.
go back to reference Tebas P et al (2014) Gene editing of CCR68 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910CrossRef Tebas P et al (2014) Gene editing of CCR68 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910CrossRef
66.
go back to reference Flotte TR (2015) Therapeutic germ line alteration: has CRISPR/Cas9 technology forced the question? Hum Gene Ther 26(5):245–246CrossRef Flotte TR (2015) Therapeutic germ line alteration: has CRISPR/Cas9 technology forced the question? Hum Gene Ther 26(5):245–246CrossRef
69.
go back to reference Kosal ME (2009) Nanotechnology for chemical and biological defense. Springer Academic Publishers, New YorkCrossRef Kosal ME (2009) Nanotechnology for chemical and biological defense. Springer Academic Publishers, New YorkCrossRef
70.
go back to reference Ostfield M (2009) Pathogen security: the illusion of security in foreign policy and biodefense. Int J Risk Assess Manag 12:204–221CrossRef Ostfield M (2009) Pathogen security: the illusion of security in foreign policy and biodefense. Int J Risk Assess Manag 12:204–221CrossRef
Metadata
Title
Emerging Life Sciences: New Challenges to Strategic Stability
Author
Margaret E. Kosal
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-28342-1_3

Premium Partner