Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Emerging Memory Technologies

Authors : Brajesh Kumar Kaushik, Shivam Verma, Anant Aravind Kulkarni, Sanjay Prajapati

Published in: Next Generation Spin Torque Memories

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In conventional memory hierarchy, memories near and away from the processor provide short and long latencies (see Fig. 1.1), respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Nitayama, Y. Kohyama, and K. Hieda, “Future directions for DRAM memory cell technology,” Int. Elect. Dev. Meet. 1998. Tech. Dig. (Cat. No.98CH36217), pp. 355–358, 1998. A. Nitayama, Y. Kohyama, and K. Hieda, “Future directions for DRAM memory cell technology,” Int. Elect. Dev. Meet. 1998. Tech. Dig. (Cat. No.98CH36217), pp. 355–358, 1998.
2.
go back to reference M. Qazi, M. E. Sinangil, and A. P. Chandrakasan, “Challenges and directions for low-voltage SRAM,” IEEE Des. Test Compu., vol. 28, no. 1, pp. 32–43, 2011. M. Qazi, M. E. Sinangil, and A. P. Chandrakasan, “Challenges and directions for low-voltage SRAM,” IEEE Des. Test Compu., vol. 28, no. 1, pp. 32–43, 2011.
3.
go back to reference P. Gepner and M. F. Kowalik, “Multi-Core Processors: New way to achieve high system performance,” Int. Symp. Para. Compu. Elect. Eng., pp. 0–4, 2006. P. Gepner and M. F. Kowalik, “Multi-Core Processors: New way to achieve high system performance,” Int. Symp. Para. Compu. Elect. Eng., pp. 0–4, 2006.
4.
go back to reference S. Yoo, “Introduction to flash memory operation,” Proc. of IEEE, vol. 91, no. 4, pp. 1–16, 2009. S. Yoo, “Introduction to flash memory operation,” Proc. of IEEE, vol. 91, no. 4, pp. 1–16, 2009.
5.
go back to reference C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li, “Emerging non-volatile memories,” Proc. 17th IEEE/ACM/IFIP Int. Conf. Har./sof. Codes. Sys. Synth. - CODES + ISSS ’11, p. 325, 2011. C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li, “Emerging non-volatile memories,” Proc. 17th IEEE/ACM/IFIP Int. Conf. Har./sof. Codes. Sys. Synth. - CODES + ISSS ’11, p. 325, 2011.
6.
go back to reference H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE, vol. 98, no. 12, pp. 2201–2227, 2010. H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE, vol. 98, no. 12, pp. 2201–2227, 2010.
7.
go back to reference H. Akinaga and H. Shima, “Resistive random access memory (ReRAM) based on metal oxides,” Proc. IEEE, vol. 98, no. 12, pp. 2237–2251, 2010. H. Akinaga and H. Shima, “Resistive random access memory (ReRAM) based on metal oxides,” Proc. IEEE, vol. 98, no. 12, pp. 2237–2251, 2010.
8.
go back to reference S. Park, B. Magyari-kope, and Y. Nishi, “First-principles study of resistance switching in rutile TiO2 with oxygen vacancy,” Nonvol. Mem. Tech. Symp. 2008, no. c, pp. 2–6, 2008. S. Park, B. Magyari-kope, and Y. Nishi, “First-principles study of resistance switching in rutile TiO2 with oxygen vacancy,” Nonvol. Mem. Tech. Symp. 2008, no. c, pp. 2–6, 2008.
9.
go back to reference Q. Liu, S. Long, W. Wang, Q. Zuo, S. Zhang, J. Chen, and M. Liu, “Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions,” IEEE Elect. Dev. Lett., vol. 30, no. 12, pp. 1335–1337, 2009. Q. Liu, S. Long, W. Wang, Q. Zuo, S. Zhang, J. Chen, and M. Liu, “Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions,” IEEE Elect. Dev. Lett., vol. 30, no. 12, pp. 1335–1337, 2009.
10.
go back to reference H. Akinaga and H. Shima, “ReRAM technology; challenges and prospects,” IEICE Elect. Exp., vol. 9, no. 8, pp. 795–807, 2012. H. Akinaga and H. Shima, “ReRAM technology; challenges and prospects,” IEICE Elect. Exp., vol. 9, no. 8, pp. 795–807, 2012.
11.
go back to reference U. Bottger and S. R. Summerfelt, “Ferroelectric random access memories,” Nanoelect. Inf. Tech., vol. 12, no. 10, pp. 565–590, 2003. U. Bottger and S. R. Summerfelt, “Ferroelectric random access memories,” Nanoelect. Inf. Tech., vol. 12, no. 10, pp. 565–590, 2003.
12.
go back to reference T. Mikolajick, S. Müller, T. Schenk, E. Yurchuk, S. Slesazeck, U. Schröder, S. Flachowsky, R. Van Bentum, S. Kolodinski, P. Polakowski, and J. Müller, “Doped Hafnium oxide – An enabler for ferroelectric field effect transistors,” Adv. in sci. and Tech., vol. 95, pp. 136–145, 2014. T. Mikolajick, S. Müller, T. Schenk, E. Yurchuk, S. Slesazeck, U. Schröder, S. Flachowsky, R. Van Bentum, S. Kolodinski, P. Polakowski, and J. Müller, “Doped Hafnium oxide – An enabler for ferroelectric field effect transistors,” Adv. in sci. and Tech., vol. 95, pp. 136–145, 2014.
13.
go back to reference J. M. Slaughter, “Recent advances in MRAM technology,” 65th DRC Dev. Res. Conf., vol. 42, no. August 2006, pp. 245–246, 2006. J. M. Slaughter, “Recent advances in MRAM technology,” 65th DRC Dev. Res. Conf., vol. 42, no. August 2006, pp. 245–246, 2006.
14.
go back to reference D. Apalkov, A. Ong, A. Driskill-Smith, M. Krounbi, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis, K. Moon, X. Luo, and E. Chen, “Spin-transfer torque magnetic random access memory (STT-MRAM),” ACM J. Emer. Tech. Comp. Sys., vol. 9, no. 2, pp. 1–35, 2013. D. Apalkov, A. Ong, A. Driskill-Smith, M. Krounbi, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis, K. Moon, X. Luo, and E. Chen, “Spin-transfer torque magnetic random access memory (STT-MRAM),” ACM J. Emer. Tech. Comp. Sys., vol. 9, no. 2, pp. 1–35, 2013.
15.
go back to reference X. Fong, Y. Kim, K. Yogendra, D. Fan, A. Sengupta, A. Raghunathan, and K. Roy, “Spin-transfer torque devices for logic and memory: Prospects and perspectives,” IEEE Trans. Compu. Des. Inte. Cir. Sys., vol. 35, no. 1, pp. 1–22, 2016. X. Fong, Y. Kim, K. Yogendra, D. Fan, A. Sengupta, A. Raghunathan, and K. Roy, “Spin-transfer torque devices for logic and memory: Prospects and perspectives,” IEEE Trans. Compu. Des. Inte. Cir. Sys., vol. 35, no. 1, pp. 1–22, 2016.
16.
go back to reference T. Kawahara, K. Ito, R. Takemura, and H. Ohno, “Spin-transfer torque RAM technology: Review and prospect,” Microelect. Reliab., vol. 52, no. 4, pp. 613–627, 2012. T. Kawahara, K. Ito, R. Takemura, and H. Ohno, “Spin-transfer torque RAM technology: Review and prospect,” Microelect. Reliab., vol. 52, no. 4, pp. 613–627, 2012.
17.
go back to reference F.J.A.D. Broeder, W. Hoving, and P.J.H. Bloemen, “Magnetic anisotropy of multilayers,” J. of Magn. and Mag. Mat., vol. 93, pp. 562–570, 1991. F.J.A.D. Broeder, W. Hoving, and P.J.H. Bloemen, “Magnetic anisotropy of multilayers,” J. of Magn. and Mag. Mat., vol. 93, pp. 562–570, 1991.
18.
go back to reference G. Prenat, K. Jabeur, P. Vanhauwaert, G. Di Pendina, F. Oboril, R. Bishnoi, M. Ebrahimi, N. Lamard, O. Boulle, K. Garello, J. Langer, B. Ocker, M. C. Cyrille, P. Gambardella, M. Tahoori, and G. Gaudin, “Ultra-fast and high-reliability SOT-MRAM: From cache replacement to normally-Off computing,” IEEE Trans. Mul. Compu. Sys., vol. 2, no. 1, pp. 49–60, 2016. G. Prenat, K. Jabeur, P. Vanhauwaert, G. Di Pendina, F. Oboril, R. Bishnoi, M. Ebrahimi, N. Lamard, O. Boulle, K. Garello, J. Langer, B. Ocker, M. C. Cyrille, P. Gambardella, M. Tahoori, and G. Gaudin, “Ultra-fast and high-reliability SOT-MRAM: From cache replacement to normally-Off computing,” IEEE Trans. Mul. Compu. Sys., vol. 2, no. 1, pp. 49–60, 2016.
19.
go back to reference J. E. Hirsch, “Spin Hall Effect,” Phy. Rev. Let., vol. 83, no. 9, pp. 1834–1837, 1999. J. E. Hirsch, “Spin Hall Effect,” Phy. Rev. Let., vol. 83, no. 9, pp. 1834–1837, 1999.
20.
go back to reference H. Numata, T. Suzuki, N. Ohshima, S. Fukami, K. Nagahara, N. Ishiwata, and N. Kasai, “Scalable cell technology utilizing domain wall motion for high-speed MRAM,” IEEE symp. of VLSI Tech., June 2007, vol. 89, pp. 232–233. H. Numata, T. Suzuki, N. Ohshima, S. Fukami, K. Nagahara, N. Ishiwata, and N. Kasai, “Scalable cell technology utilizing domain wall motion for high-speed MRAM,” IEEE symp. of VLSI Tech., June 2007, vol. 89, pp. 232–233.
Metadata
Title
Emerging Memory Technologies
Authors
Brajesh Kumar Kaushik
Shivam Verma
Anant Aravind Kulkarni
Sanjay Prajapati
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2720-8_1