Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Energy Characteristics of Welding Heat Sources

Author : Victor A. Karkhin

Published in: Thermal Processes in Welding

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In most cases welding is carried out with local heating of bodies up to the temperature which is determined by the type of welding and properties of the materials to be welded.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alaluss, K., Buerkner, G., Nguyen-Chung, T., Gehde, M., & Mennig, G. (2010). Simulation of weld pool in plasma—MIG deposition welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 93–109). Graz: Verlag der Technischen Universitaet Graz. Alaluss, K., Buerkner, G., Nguyen-Chung, T., Gehde, M., & Mennig, G. (2010). Simulation of weld pool in plasma—MIG deposition welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 93–109). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Belousov, Yu. V. (2002). Evaluation of concentration of surface heat source with normally distributed heat power. Welding Production, 8, 8–12 (in Russian). Belousov, Yu. V. (2002). Evaluation of concentration of surface heat source with normally distributed heat power. Welding Production, 8, 8–12 (in Russian).
go back to reference Bosworth, M. R. (1991) Effective heat input in pulsed current gas metal arc welding with solid wire electrodes. Welding Journal, 5, 111-s–117-s. Bosworth, M. R. (1991) Effective heat input in pulsed current gas metal arc welding with solid wire electrodes. Welding Journal, 5, 111-s–117-s.
go back to reference Carlson, B. E., Wang, H. -P., Turichin, G. A., Valdaitseva, Y. A., Ivanov, S. Yu., & Karkhin, V. A. (2013). Mathematical model of plasma jet for plasma arc brazing. In C. Sommitsch & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 737–751). Graz: Verlag der Technischen Universitaet Graz. Carlson, B. E., Wang, H. -P., Turichin, G. A., Valdaitseva, Y. A., Ivanov, S. Yu., & Karkhin, V. A. (2013). Mathematical model of plasma jet for plasma arc brazing. In C. Sommitsch & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 737–751). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Cho, W. -I., Na, S. -Y., Cho, M. -H., & Lee, J. -S. (2010). A transient investigation of laser–arc hybrid welding by numerical simulation. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 57–63). Graz: Verlag der Technischen Universitaet Graz. Cho, W. -I., Na, S. -Y., Cho, M. -H., & Lee, J. -S. (2010). A transient investigation of laser–arc hybrid welding by numerical simulation. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 57–63). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Choo, R. T. C., Szekely, J., & Westhoff, R. C. (1990). Modelling of high-current arcs with emphasis on free surface phenomena in the weld pool. Welding Journal, 9, 346-s–361-s. Choo, R. T. C., Szekely, J., & Westhoff, R. C. (1990). Modelling of high-current arcs with emphasis on free surface phenomena in the weld pool. Welding Journal, 9, 346-s–361-s.
go back to reference Christensen, N., Davies, V. L., & Gjermundsen, K. (1965). Distribution of temperatures in arc welding. British Welding Journal, 54–75. Christensen, N., Davies, V. L., & Gjermundsen, K. (1965). Distribution of temperatures in arc welding. British Welding Journal, 54–75.
go back to reference Doan, G. E., & Lorentz, R. E. (1941). Crater formation and the force of the electric welding arc in various atmospheres. Welding Journal, 20, 103-s–108-s. Doan, G. E., & Lorentz, R. E. (1941). Crater formation and the force of the electric welding arc in various atmospheres. Welding Journal, 20, 103-s–108-s.
go back to reference Dresvin, S. V. (Ed.). (1972). Physics and techniques of low-temperature plasma (351 pp.). Moscow: Atomizdat (in Russian). Dresvin, S. V. (Ed.). (1972). Physics and techniques of low-temperature plasma (351 pp.). Moscow: Atomizdat (in Russian).
go back to reference DuPont, J. N., & Marder, A. R. (1995). Thermal efficiency of arc welding processes. Welding Journal, 12, 406-s–416-s. DuPont, J. N., & Marder, A. R. (1995). Thermal efficiency of arc welding processes. Welding Journal, 12, 406-s–416-s.
go back to reference Eagar, T. W., & Tsai, N. -S. (1983). Temperature fields produced by traveling distributed heat sources. Welding Journal, 12, 346-s–355-s. Eagar, T. W., & Tsai, N. -S. (1983). Temperature fields produced by traveling distributed heat sources. Welding Journal, 12, 346-s–355-s.
go back to reference Evans, D. M., Huang, D., McClure, J. C., & Nunes, A. C. (1998). Arc efficiency of plasma arc welding. Welding Journal, 2, 53-s–58-s. Evans, D. M., Huang, D., McClure, J. C., & Nunes, A. C. (1998). Arc efficiency of plasma arc welding. Welding Journal, 2, 53-s–58-s.
go back to reference Farmer, A. J. D., Haddad, G. N., & Cram, L. E. (1986). Temperature determinations in a free-burning arc: III measurements with molten anodes. Journal of Physics D: Applied Physics, 19, 1723–1730. Farmer, A. J. D., Haddad, G. N., & Cram, L. E. (1986). Temperature determinations in a free-burning arc: III measurements with molten anodes. Journal of Physics D: Applied Physics, 19, 1723–1730.
go back to reference Finkelnburg, W., & Maecker, H. (1961). Electric arcs and thermal plasma (370 pp.). Moscow: Foreign Literature Publishing (in Russian). Finkelnburg, W., & Maecker, H. (1961). Electric arcs and thermal plasma (370 pp.). Moscow: Foreign Literature Publishing (in Russian).
go back to reference Frolov (Ed.). (1988). Theory of welding processes (559 pp.). Moscow: Vysshaya Shkola (in Russian). Frolov (Ed.). (1988). Theory of welding processes (559 pp.). Moscow: Vysshaya Shkola (in Russian).
go back to reference Fuerschbach, P. W. (1995). A dimensionless parameter model for arc welding processes/trends in welding research. In Proceedings of the 4th International Conference (pp. 493–497), 5–8 June 1995, Gatlinburg, Tennessee. Fuerschbach, P. W. (1995). A dimensionless parameter model for arc welding processes/trends in welding research. In Proceedings of the 4th International Conference (pp. 493–497), 5–8 June 1995, Gatlinburg, Tennessee.
go back to reference Gage, R. M. (1959). Principles of the modern arc torch. Welding Journal, 38(10), 959–962. Gage, R. M. (1959). Principles of the modern arc torch. Welding Journal, 38(10), 959–962.
go back to reference Galler, M., Ernst, W., Vallant, R., & Enzinger, N. (2010). Simulation based determination of the electrical contact resistance during resistance spot welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 883–900). Graz: Verlag der Technischen Universitaet Graz. Galler, M., Ernst, W., Vallant, R., & Enzinger, N. (2010). Simulation based determination of the electrical contact resistance during resistance spot welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 883–900). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Gelman, A. S. (1970). Principles of resistance welding (312 pp.). Moscow: Mashinostroenie (in Russian). Gelman, A. S. (1970). Principles of resistance welding (312 pp.). Moscow: Mashinostroenie (in Russian).
go back to reference Gick, A. E. F., Quigley, M. B. C., & Richards, P. H. (1973). The use of electrostatic probes to measure the temperature profiles of welding arcs. Journal of Physics D: Applied Physics, 6, 1941–1949. Gick, A. E. F., Quigley, M. B. C., & Richards, P. H. (1973). The use of electrostatic probes to measure the temperature profiles of welding arcs. Journal of Physics D: Applied Physics, 6, 1941–1949.
go back to reference Giedt, W. H., Tallerico, L. N., & Feurschbach, P. W. (1989). GTA welding efficiency: Calorimetric and temperature field measurements. Welding Journal, 1, 28-s–32-s. Giedt, W. H., Tallerico, L. N., & Feurschbach, P. W. (1989). GTA welding efficiency: Calorimetric and temperature field measurements. Welding Journal, 1, 28-s–32-s.
go back to reference Glickstein, S. S. (1981). Basic studies of the arc welding process. In Trends in welding research in the United States. Proceedings of a Conference (pp. 3–51). Glickstein, S. S. (1981). Basic studies of the arc welding process. In Trends in welding research in the United States. Proceedings of a Conference (pp. 3–51).
go back to reference Glickstein, S. S., & Friedmann, E. (1983). Temperature transients in gas tungsten arc weldments. Welding Review, 62(5), 72–73. Glickstein, S. S., & Friedmann, E. (1983). Temperature transients in gas tungsten arc weldments. Welding Review, 62(5), 72–73.
go back to reference Grigoryants, A. G. (1994). Basics of laser material processing (313 pp.). Taylor and Francis Inc. Grigoryants, A. G. (1994). Basics of laser material processing (313 pp.). Taylor and Francis Inc.
go back to reference Haddad, G. N., & Farmer, A. Y. D. (1984). Temperature determinations in a free–burning arc. I: experimental techniques and results in argon. Journal of Physics D, 17, 1189–1196. Haddad, G. N., & Farmer, A. Y. D. (1984). Temperature determinations in a free–burning arc. I: experimental techniques and results in argon. Journal of Physics D, 17, 1189–1196.
go back to reference Haddad, G. N., Farmer, A. Y. D., Kovitya, P., & Cram, L. E. (1985). Physical processes in gas–tungsten arcs. IIW Doc. 212-627-85. Haddad, G. N., Farmer, A. Y. D., Kovitya, P., & Cram, L. E. (1985). Physical processes in gas–tungsten arcs. IIW Doc. 212-627-85.
go back to reference Haelsig, A., Pehle, S., Kusch, M., & Mayr, P. (2017). Reducing potential errors in the calculation of cooling rates for typical arc welding processes. Welding in the World, 61, 745–754. Haelsig, A., Pehle, S., Kusch, M., & Mayr, P. (2017). Reducing potential errors in the calculation of cooling rates for typical arc welding processes. Welding in the World, 61, 745–754.
go back to reference Hertel, M., Fuessel, U., Schnick, M., Reisgen, U., Mokrov, O., Zabirov, A., & Spille-Kohoff, A. (2013). Numerical simulation of arc and metal transfer in gas metal arc welding. In C. Sommitsch & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 67–81). Graz: Verlag der Technischen Universitaet Graz. Hertel, M., Fuessel, U., Schnick, M., Reisgen, U., Mokrov, O., Zabirov, A., & Spille-Kohoff, A. (2013). Numerical simulation of arc and metal transfer in gas metal arc welding. In C. Sommitsch & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 67–81). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Hiraoka, K., Shiwaku, T., & Ohji, T. (1997). Determining temperature distributions of gas tungsten arc (TIG) plasma by spectroscopic methods. Welding International, 11(9), 688–696. Hiraoka, K., Shiwaku, T., & Ohji, T. (1997). Determining temperature distributions of gas tungsten arc (TIG) plasma by spectroscopic methods. Welding International, 11(9), 688–696.
go back to reference Hsu, K. C., Etemadi, K., & Pfender, E. (1983). Study of the free-burning high intensity argon arc. Journal of Applied Physics, 54, 1293–1301. Hsu, K. C., Etemadi, K., & Pfender, E. (1983). Study of the free-burning high intensity argon arc. Journal of Applied Physics, 54, 1293–1301.
go back to reference Ishchenko, A. Ya., Podielnikov, S. V., & Poklyatsky, A. G. (2007). Friction stir welding of aluminium alloys (Review). The Paton Welding Journal, 11, 25–30. Ishchenko, A. Ya., Podielnikov, S. V., & Poklyatsky, A. G. (2007). Friction stir welding of aluminium alloys (Review). The Paton Welding Journal, 11, 25–30.
go back to reference Jackson, C. E. (1960). The science of arc welding. Welding Journal, 39, 129-s–140-s, 177-s–190-s, 225-s–230-s. Jackson, C. E. (1960). The science of arc welding. Welding Journal, 39, 129-s–140-s, 177-s–190-s, 225-s–230-s.
go back to reference Katsaounis, A. (1993). Heat flow and arc efficiency at high pressures in argon and helium tungsten arcs. Welding Journal, 9, 447-s–454-s. Katsaounis, A. (1993). Heat flow and arc efficiency at high pressures in argon and helium tungsten arcs. Welding Journal, 9, 447-s–454-s.
go back to reference Key, J. F., Chan, J. W., & McIlwain, M. E. (1983). Process parameter influence on arc temperature distribution. Welding Journal, 62, 179-s–184-s. IIW Doc. 212-549-83. Key, J. F., Chan, J. W., & McIlwain, M. E. (1983). Process parameter influence on arc temperature distribution. Welding Journal, 62, 179-s–184-s. IIW Doc. 212-549-83.
go back to reference Kobayashi, M., & Suga, T. (1979). A method for the spectral temperature measurement of a welding arc. In W. Lucas (Ed.), Arc physics and weld pool behaviour (pp. 25–37). Cambridge: The Welding Institute. Kobayashi, M., & Suga, T. (1979). A method for the spectral temperature measurement of a welding arc. In W. Lucas (Ed.), Arc physics and weld pool behaviour (pp. 25–37). Cambridge: The Welding Institute.
go back to reference Kochergin, K. A. (1987). Resistance welding (240 pp.). Leningrad: Mashinostroenie (in Russian). Kochergin, K. A. (1987). Resistance welding (240 pp.). Leningrad: Mashinostroenie (in Russian).
go back to reference Kopayev, B. V., Rybachuk, A. M., & Lebedev, V. A. (2006). On selection of empirical formulae for arc pressure distribution. Welding Production, 4, 3–8 (in Russian). Kopayev, B. V., Rybachuk, A. M., & Lebedev, V. A. (2006). On selection of empirical formulae for arc pressure distribution. Welding Production, 4, 3–8 (in Russian).
go back to reference Kou, S., & Le, Y. (1984). Heat flow during the autogeneous GTA welding of aluminum alloy pipes. Metallurgical Transactions A, 15A(6), 1165–1171. Kou, S., & Le, Y. (1984). Heat flow during the autogeneous GTA welding of aluminum alloy pipes. Metallurgical Transactions A, 15A(6), 1165–1171.
go back to reference Kovitya, P., & Lowke, J. J. (1982). Two-dimensional calculations in welding arcs in argon. IIW Doc. 212-534-82. Kovitya, P., & Lowke, J. J. (1982). Two-dimensional calculations in welding arcs in argon. IIW Doc. 212-534-82.
go back to reference Kovitya, P., & Lowke, J. J. (1985). Two-dimensional analysis of free-burning arcs in argon. Journal of Physics D, 18, 53–70. Kovitya, P., & Lowke, J. J. (1985). Two-dimensional analysis of free-burning arcs in argon. Journal of Physics D, 18, 53–70.
go back to reference Kudinov, V. V., & Ivanov, V. M. (1981). Plasma refractory coating (192 pp.). Moscow: Mashinostroenie (in Russian). Kudinov, V. V., & Ivanov, V. M. (1981). Plasma refractory coating (192 pp.). Moscow: Mashinostroenie (in Russian).
go back to reference Lancaster, J. F. (Ed.). (1986). The physics of welding (2nd ed., 340 pp.). Oxford: Pergamon Press. Lancaster, J. F. (Ed.). (1986). The physics of welding (2nd ed., 340 pp.). Oxford: Pergamon Press.
go back to reference Lancaster, J. F. (1987). The physics of fusion welding part 1: The electric arc in welding. In IEEE Proceedings, 134, Pt. B(5), 233–254. Lancaster, J. F. (1987). The physics of fusion welding part 1: The electric arc in welding. In IEEE Proceedings, 134, Pt. B(5), 233–254.
go back to reference Lebedev, V. K., Chernenko, I. A., & Vill, V. I. (Eds.). (1987). Friction welding. Handbook (236 pp.). Leningrad: Mashinostroenie (in Russian). Lebedev, V. K., Chernenko, I. A., & Vill, V. I. (Eds.). (1987). Friction welding. Handbook (236 pp.). Leningrad: Mashinostroenie (in Russian).
go back to reference Lee, S.-Y., & Na, S.-J. (1996). A numerical analysis of a stationary gas tungsten welding arc considering various electrode angles. Welding Journal, 9, 269-s–279-s. Lee, S.-Y., & Na, S.-J. (1996). A numerical analysis of a stationary gas tungsten welding arc considering various electrode angles. Welding Journal, 9, 269-s–279-s.
go back to reference Leskov, G. I. (1970). Electric welding arc (335 pp.). Moscow: Mashinostroenie (in Russian). Leskov, G. I. (1970). Electric welding arc (335 pp.). Moscow: Mashinostroenie (in Russian).
go back to reference Lindgren, L.-E. (2007). Computational welding mechanics. Thermomechanical and microstructural simulations (248 pp.). Cambridge: Woodhead Publishing Ltd. Lindgren, L.-E. (2007). Computational welding mechanics. Thermomechanical and microstructural simulations (248 pp.). Cambridge: Woodhead Publishing Ltd.
go back to reference Lohwasser, D., & Chen, Z. (Eds.). (2010). Friction stir welding: From basics to applications (424 pp.). Oxford: Woodhead Publishing. Lohwasser, D., & Chen, Z. (Eds.). (2010). Friction stir welding: From basics to applications (424 pp.). Oxford: Woodhead Publishing.
go back to reference Lopota, V. A., Turichin, G. A., Valdaytseva, E. A., Malkin, P. E., & Gumenyuk, A. V. (2006). Computer system for modelling of electron beam and laser welding. Automatic Welding, 2, 18–21 (in Russian). Lopota, V. A., Turichin, G. A., Valdaytseva, E. A., Malkin, P. E., & Gumenyuk, A. V. (2006). Computer system for modelling of electron beam and laser welding. Automatic Welding, 2, 18–21 (in Russian).
go back to reference Lowke, J. J., & Tanaka, M. (2006). LTE—Diffusion approximation for arc calculations. Journal of Physics D: Applied Physics, 39, 3634–3643. Lowke, J. J., & Tanaka, M. (2006). LTE—Diffusion approximation for arc calculations. Journal of Physics D: Applied Physics, 39, 3634–3643.
go back to reference Lu, M., & Kou, S. (1988). Power and current distributions in gas tungsten arcs. Welding Journal, 2, 29-s–34-s. Lu, M., & Kou, S. (1988). Power and current distributions in gas tungsten arcs. Welding Journal, 2, 29-s–34-s.
go back to reference Makhnenko, V. I., & Kravtsov, T. G. (1976). Thermal processes in mechanized deposition on circular cylinder-shaped workpieces (159 pp.). Kiev: Naukova Dumka (in Russian). Makhnenko, V. I., & Kravtsov, T. G. (1976). Thermal processes in mechanized deposition on circular cylinder-shaped workpieces (159 pp.). Kiev: Naukova Dumka (in Russian).
go back to reference Martin, J. (2006, Jan/Feb). Pushing the boundaries—Friction stir goes deeper than before. TWI Connect, 1. Martin, J. (2006, Jan/Feb). Pushing the boundaries—Friction stir goes deeper than before. TWI Connect, 1.
go back to reference Matsunawa, A., & Nishiguchi, M. (1979). The cathode mechanism in free burning arcs with refractory electrodes: Probe measurement in low pressure arcs and the mechanism of a cathode plasma ball. In W. Lucas (Ed.), Arc physics and weld pool behaviour (pp. 67–77). Cambridge: The Welding Institute. Matsunawa, A., & Nishiguchi, M. (1979). The cathode mechanism in free burning arcs with refractory electrodes: Probe measurement in low pressure arcs and the mechanism of a cathode plasma ball. In W. Lucas (Ed.), Arc physics and weld pool behaviour (pp. 67–77). Cambridge: The Welding Institute.
go back to reference Messler, R. W. Jr. (1999). Principles of welding: Processes, physics, chemistry, and metallurgy (662 pp.). New York: Wiley. Messler, R. W. Jr. (1999). Principles of welding: Processes, physics, chemistry, and metallurgy (662 pp.). New York: Wiley.
go back to reference Metcalfe, J. C., & Quingley, M. B. C. (1975). Heat transfer in plasma-arc welding. Welding Journal, 54(3), 99-s–103-s. Metcalfe, J. C., & Quingley, M. B. C. (1975). Heat transfer in plasma-arc welding. Welding Journal, 54(3), 99-s–103-s.
go back to reference Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Reports: A Review Journal. Materials Science and Engineering R, 50, 1–78. Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Reports: A Review Journal. Materials Science and Engineering R, 50, 1–78.
go back to reference Mishra, R. S., & Mahoney, M. W. (Eds.). (2007). Friction stir welding and processing (352 pp.). Materials Park, Ohio: ASM International. Mishra, R. S., & Mahoney, M. W. (Eds.). (2007). Friction stir welding and processing (352 pp.). Materials Park, Ohio: ASM International.
go back to reference Mochizuki, M., Tanaka, M., & Okano, S. (2010). Distortion analysis by combining arc plasma process with weld mechanics. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 551–578 ). Graz: Verlag der Technischen Universitaet Graz. Mochizuki, M., Tanaka, M., & Okano, S. (2010). Distortion analysis by combining arc plasma process with weld mechanics. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 551–578 ). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Murphy, A. B., Tanaka, M., Yamamoto, K., Tashiro, S., Sato, T., & Lowke, J. J. (2009). Modelling of thermal plasmas for arc welding: The role of the shielding gas properties and of metal vapour. Journal of Physics D: Applied Physics, 42, 1–20. Murphy, A. B., Tanaka, M., Yamamoto, K., Tashiro, S., Sato, T., & Lowke, J. J. (2009). Modelling of thermal plasmas for arc welding: The role of the shielding gas properties and of metal vapour. Journal of Physics D: Applied Physics, 42, 1–20.
go back to reference Murphy, A. B., & Thomas, D. G. (2017). Prediction of arc, weld pool and weld properties with a desktop computer model of metal-inert-gas welding. Welding in the World, 61, 623–633. Murphy, A. B., & Thomas, D. G. (2017). Prediction of arc, weld pool and weld properties with a desktop computer model of metal-inert-gas welding. Welding in the World, 61, 623–633.
go back to reference Nerovny, V. M. (Ed.). (2016). Theory of welding processes (2nd ed., 702 pp.). Moscow: MVTU Publishing (in Russian). Nerovny, V. M. (Ed.). (2016). Theory of welding processes (2nd ed., 702 pp.). Moscow: MVTU Publishing (in Russian).
go back to reference Nestor, O. H. (1962). Heat intensity and current density distributions at the anode of high-current, inert gas. Journal of Applied Physics, 33(5), 1638–1648. Nestor, O. H. (1962). Heat intensity and current density distributions at the anode of high-current, inert gas. Journal of Applied Physics, 33(5), 1638–1648.
go back to reference Niles, R. W., & Jackson, C. E. (1975). Weld thermal efficiency of the GTAW process. Welding Journal, 1, 25 s–32 s. Niles, R. W., & Jackson, C. E. (1975). Weld thermal efficiency of the GTAW process. Welding Journal, 1, 25 s–32 s.
go back to reference Nomura, K., Ogino, Y., Murakami, K., & Hirata, Y. (2010). Features of magnetic controlled TIG arc plasma—Modelling and experiment. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 83–91). Graz: Technischen Universitaet Graz. Nomura, K., Ogino, Y., Murakami, K., & Hirata, Y. (2010). Features of magnetic controlled TIG arc plasma—Modelling and experiment. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 83–91). Graz: Technischen Universitaet Graz.
go back to reference Olsen, H. N. (1963). The electric arc as a light source for quantitative spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 3, 305–333. Olsen, H. N. (1963). The electric arc as a light source for quantitative spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 3, 305–333.
go back to reference Olshansky, N. A. (Ed.). (1978). Welding in engineering industry. 1. Handbook (504 pp.). Moscow: Mashinostroenie (in Russian). Olshansky, N. A. (Ed.). (1978). Welding in engineering industry. 1. Handbook (504 pp.). Moscow: Mashinostroenie (in Russian).
go back to reference Petrov, G. L., & Tumarev, A. S. (1977). Theory of welding processes (2nd ed., 392 pp.). Moscow: Vysshaya Shkola Publishing (in Russian). Petrov, G. L., & Tumarev, A. S. (1977). Theory of welding processes (2nd ed., 392 pp.). Moscow: Vysshaya Shkola Publishing (in Russian).
go back to reference Petrunichev, V. A. (1960). Thermal and mechanical effect of high-power arc on weld pool. In N. N. Rykalin (Ed.), Processes of melting of base metal during welding (pp. 117–166). Moscow: Publishing House of the Academy of Sciences of the USSR (in Russian). Petrunichev, V. A. (1960). Thermal and mechanical effect of high-power arc on weld pool. In N. N. Rykalin (Ed.), Processes of melting of base metal during welding (pp. 117–166). Moscow: Publishing House of the Academy of Sciences of the USSR (in Russian).
go back to reference Prokhorov, N. N. (1976). Physical processes in metals during welding. 2 Stresses, deformations and phase transformations (600 pp.). Moscow: Metallurgiya (in Russian). Prokhorov, N. N. (1976). Physical processes in metals during welding. 2 Stresses, deformations and phase transformations (600 pp.). Moscow: Metallurgiya (in Russian).
go back to reference Radaj, D. (1992). Heat effects of welding. Temperature field, residual stress, distortion (348 pp.). Berlin: Springer. Radaj, D. (1992). Heat effects of welding. Temperature field, residual stress, distortion (348 pp.). Berlin: Springer.
go back to reference Rykalin, N. N. (1951). Calculation of heat flow in welding (Z. Paley & C. M. Adams, Jr. Trans.) (337 pp.). Moscow. Rykalin, N. N. (1951). Calculation of heat flow in welding (Z. Paley & C. M. Adams, Jr. Trans.) (337 pp.). Moscow.
go back to reference Rykalin, N. N. (1957). Berechnung der Waermevorgaenge beim Schweissen (326 pp.). Berlin: VEB Verlag Technik (in German). Rykalin, N. N. (1957). Berechnung der Waermevorgaenge beim Schweissen (326 pp.). Berlin: VEB Verlag Technik (in German).
go back to reference Rykalin, N. N. (1974). Energy sources for welding. Welding in the World, 12(9/10), 227–248. Rykalin, N. N. (1974). Energy sources for welding. Welding in the World, 12(9/10), 227–248.
go back to reference Rykalin, N. N., & Kulagin, I. D. (1953). Thermal parameters of the welding arc. In V. P. Nikitin (Ed.), Thermal processes in welding (pp. 10–58). Moscow: Publication of the USSR Academy of Sciences (in Russian). Rykalin, N. N., & Kulagin, I. D. (1953). Thermal parameters of the welding arc. In V. P. Nikitin (Ed.), Thermal processes in welding (pp. 10–58). Moscow: Publication of the USSR Academy of Sciences (in Russian).
go back to reference Rykalin, N. N., & Shorshorov, M. H. (1953). Heating of thin metal sheets and massive workpieces with gas flame torch. In V. P. Nikitin (Ed.), Thermal processes in welding (pp. 89–111). Moscow: Publication of the USSR Academy of Sciences (in Russian). Rykalin, N. N., & Shorshorov, M. H. (1953). Heating of thin metal sheets and massive workpieces with gas flame torch. In V. P. Nikitin (Ed.), Thermal processes in welding (pp. 89–111). Moscow: Publication of the USSR Academy of Sciences (in Russian).
go back to reference Rykalin, N., Uglov, A., & Kokora, A. (1978). Laser machining and welding (312 pp.). Moscow: Mir Publishers. Rykalin, N., Uglov, A., & Kokora, A. (1978). Laser machining and welding (312 pp.). Moscow: Mir Publishers.
go back to reference Rykalin, N., Uglov, A., Zuev, I., & Kokora, A. (1988). Laser and electron beam material processing: Handbook (591 pp.). Moscow: Mir Publishers. Rykalin, N., Uglov, A., Zuev, I., & Kokora, A. (1988). Laser and electron beam material processing: Handbook (591 pp.). Moscow: Mir Publishers.
go back to reference Sandvik (1977). Welding handbook (136 pp.). Sandviken: Sandvik Publication. Sandvik (1977). Welding handbook (136 pp.). Sandviken: Sandvik Publication.
go back to reference Schmidt, H. N. B. (2010). Modelling thermal properties in friction stir welding. In D. Lohwasser, Z. Chen (Eds.), Friction stir welding. From basics to applications (pp. 277–313). Oxford: Woodhead Publishing. Schmidt, H. N. B. (2010). Modelling thermal properties in friction stir welding. In D. Lohwasser, Z. Chen (Eds.), Friction stir welding. From basics to applications (pp. 277–313). Oxford: Woodhead Publishing.
go back to reference Schnick, M., Fussel, U., Hertel, M., Spille-Kohoff, A., & Murphy, A. B. (2010). Effects of metal vapour on the arc behaviour in GMA welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 43–56). Graz: Verlag der Technischer Universitaet Graz. Schnick, M., Fussel, U., Hertel, M., Spille-Kohoff, A., & Murphy, A. B. (2010). Effects of metal vapour on the arc behaviour in GMA welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 43–56). Graz: Verlag der Technischer Universitaet Graz.
go back to reference Seyffarth, P., & Krivtsun, I. (2002). Laser-arc processes and their applications in welding and material treatment (200 pp.). Boca Raton: CRC Press. Seyffarth, P., & Krivtsun, I. (2002). Laser-arc processes and their applications in welding and material treatment (200 pp.). Boca Raton: CRC Press.
go back to reference Smaars, E. A., & Acinger, K. (1968). Material transport and temperature distribution in arc between melting aluminium electrodes. IIW Doc. 212-162-68. Smaars, E. A., & Acinger, K. (1968). Material transport and temperature distribution in arc between melting aluminium electrodes. IIW Doc. 212-162-68.
go back to reference Smartt, H. B., Stewart, J. A., & Einerson, C. J. (1986). Heat transfer in gas tungsten arc welding. ASM Metals/Materials Technology Series, 8511–011. Metals Park, Ohio, 1–14. Smartt, H. B., Stewart, J. A., & Einerson, C. J. (1986). Heat transfer in gas tungsten arc welding. ASM Metals/Materials Technology Series, 8511–011. Metals Park, Ohio, 1–14.
go back to reference Sosnin, N. A., Yermakov, S. A., & Topolyansky, P. A. (2008). Plasma technologies (406 pp.). St. Petersburg: Polytechnic University Publishing (in Russian). Sosnin, N. A., Yermakov, S. A., & Topolyansky, P. A. (2008). Plasma technologies (406 pp.). St. Petersburg: Polytechnic University Publishing (in Russian).
go back to reference Sudnik, V. A., & Ivanov, A. V. (1998). Mathematical model for heat source in gas metal arc welding. Part 1. Normal process. Welding Production, 9, 3–9 (in Russian). Sudnik, V. A., & Ivanov, A. V. (1998). Mathematical model for heat source in gas metal arc welding. Part 1. Normal process. Welding Production, 9, 3–9 (in Russian).
go back to reference Sudnik, V. A., & Rybakov, A. S. (1992). Calculation and experimental models of the moving arc of a non-consumable electrode in argon. Welding International, 6(4), 301–303. Sudnik, V. A., & Rybakov, A. S. (1992). Calculation and experimental models of the moving arc of a non-consumable electrode in argon. Welding International, 6(4), 301–303.
go back to reference Sudnik, V. A., Rybakov, A. S., & Zaytsev, O. I. (2005). Mathematical and computer software TIGSIM for analysis of arc welding with a non-consumable electrode in argon. In V. A. Sudnik (Ed.), Proceedings of International Conference on Computer Technologies in Joining of Materials (pp. 128–145). Tula: Tula State University Publishing (in Russian). Sudnik, V. A., Rybakov, A. S., & Zaytsev, O. I. (2005). Mathematical and computer software TIGSIM for analysis of arc welding with a non-consumable electrode in argon. In V. A. Sudnik (Ed.), Proceedings of International Conference on Computer Technologies in Joining of Materials (pp. 128–145). Tula: Tula State University Publishing (in Russian).
go back to reference Sudnik, V. A., & Yerofeyev, V. A. (1988). Computer methods for research of welding processes (94 pp.). Tula: Publishing House of the Technical University (in Russian). Sudnik, V. A., & Yerofeyev, V. A. (1988). Computer methods for research of welding processes (94 pp.). Tula: Publishing House of the Technical University (in Russian).
go back to reference Szekely, J. (1989). Transport phenomena in welds with emphasis on free surface phenomena. In Proceedings of 2nd International Conference on Trends in Welding Research (pp. 3–11). Szekely, J. (1989). Transport phenomena in welds with emphasis on free surface phenomena. In Proceedings of 2nd International Conference on Trends in Welding Research (pp. 3–11).
go back to reference Thomas, W. M., Nicholas, E. D., Needhamm, J. C., Murch, M. G., Temple-Smith, P., & Dawes, C. J. (1991). Improvements relating to friction welding. European Patent Specification 0 615 480 B1 1991. Thomas, W. M., Nicholas, E. D., Needhamm, J. C., Murch, M. G., Temple-Smith, P., & Dawes, C. J. (1991). Improvements relating to friction welding. European Patent Specification 0 615 480 B1 1991.
go back to reference Threadgill, P. L., Leonard, A. J., Shercliff, H. R., & Withers, P. J. (2009). Friction stir welding of aluminum alloys. International Materials Reviews, 54(2), 49–93. Threadgill, P. L., Leonard, A. J., Shercliff, H. R., & Withers, P. J. (2009). Friction stir welding of aluminum alloys. International Materials Reviews, 54(2), 49–93.
go back to reference Tikhodeyev, G. M. (1961). Energetic properties of electric welding arc (254 pp.). Moscow: Publishing House of the USSR Academy of Sciences (in Russian). Tikhodeyev, G. M. (1961). Energetic properties of electric welding arc (254 pp.). Moscow: Publishing House of the USSR Academy of Sciences (in Russian).
go back to reference Tsai, N. S., & Eagar, T. W. (1985). Distribution of the heat and current fluxes in gas tungsten arcs. Metallurgical Transactions B, 16B(12), 841–846. Tsai, N. S., & Eagar, T. W. (1985). Distribution of the heat and current fluxes in gas tungsten arcs. Metallurgical Transactions B, 16B(12), 841–846.
go back to reference Tsarkov, A. V., & Orlik, G. V. (2001). Determination of concentration factor of welding arc in tungsten arc welding. Welding Production, 6, 3–5 (in Russian). Tsarkov, A. V., & Orlik, G. V. (2001). Determination of concentration factor of welding arc in tungsten arc welding. Welding Production, 6, 3–5 (in Russian).
go back to reference Turichin, G., Valdaitseva, E., Pozdeeva, E., Dilthey, U., & Gumeniuk, A. (2008). Theoretical investigation of dynamic behaviour of molten pool in laser and hybrid welding with deep penetration. The Paton Welding Journal, 7, 11–15. Turichin, G., Valdaitseva, E., Pozdeeva, E., Dilthey, U., & Gumeniuk, A. (2008). Theoretical investigation of dynamic behaviour of molten pool in laser and hybrid welding with deep penetration. The Paton Welding Journal, 7, 11–15.
go back to reference Turichin, G. A., Valdaytseva, E. A., Karkhin, V. A., Wang, H.-P., & Carlson, B. E. (2013). Modelling of plasma jet temperature field with slope incident on the surface with plasma and hybrid processing materials. In Proceedings of the 7th International Scientific and Technical Conference on Beam Technologies and Laser Application (pp. 18–21) September 2013. St. Petersburg, Russia. St. Petersburg: St. Petersburg State Polytechnic University Publishing (pp. 52–64). Turichin, G. A., Valdaytseva, E. A., Karkhin, V. A., Wang, H.-P., & Carlson, B. E. (2013). Modelling of plasma jet temperature field with slope incident on the surface with plasma and hybrid processing materials. In Proceedings of the 7th International Scientific and Technical Conference on Beam Technologies and Laser Application (pp. 18–21) September 2013. St. Petersburg, Russia. St. Petersburg: St. Petersburg State Polytechnic University Publishing (pp. 52–64).
go back to reference Ushio, M., & Matsuda, F. (1982). Mathematical modeling of heat transfer of welding arc (Part 1). IIW Doc. 212-528-82. Ushio, M., & Matsuda, F. (1982). Mathematical modeling of heat transfer of welding arc (Part 1). IIW Doc. 212-528-82.
go back to reference Vill, V. I. (1962). Friction welding of metals (114 pp.). American Welding Society. Vill, V. I. (1962). Friction welding of metals (114 pp.). American Welding Society.
go back to reference Watkins, A. D., Smartt, H. B., & Einerson, C. Y. (1990). Heat transfer in gas metal arc welding. In Proceedings of 3rd Conference on Recent Trends in Welding Science and Technology. Metals Park (pp. 19–23). Ohio: ASM International. Watkins, A. D., Smartt, H. B., & Einerson, C. Y. (1990). Heat transfer in gas metal arc welding. In Proceedings of 3rd Conference on Recent Trends in Welding Science and Technology. Metals Park (pp. 19–23). Ohio: ASM International.
go back to reference Wendelstorf, J., Decker, I., & Wohlfahrt, H. (1997). TIG and plasma arc modelling: A survey. In H. Cerjak (Ed.), Mathematical modelling of weld phenomena (Vol. 3, pp. 848–897). London: The Institute of Materials. Wendelstorf, J., Decker, I., & Wohlfahrt, H. (1997). TIG and plasma arc modelling: A survey. In H. Cerjak (Ed.), Mathematical modelling of weld phenomena (Vol. 3, pp. 848–897). London: The Institute of Materials.
go back to reference Yamauchi, N., & Taka, T. (1979). TIG arc welding with hollow tungsten electrodes. IIW Doc. 212-452-79. Yamauchi, N., & Taka, T. (1979). TIG arc welding with hollow tungsten electrodes. IIW Doc. 212-452-79.
go back to reference Yampolsky, V. M. (1972). Investigation of features of vacuum arc discharge with hollow cathode of welding type. Transactions of Institutes of Higher Education. Engineering, 7, 67–68 (in Russian). Yampolsky, V. M. (1972). Investigation of features of vacuum arc discharge with hollow cathode of welding type. Transactions of Institutes of Higher Education. Engineering, 7, 67–68 (in Russian).
go back to reference Yerofeyev, V. A., & Maslennikov, A. V. (2005). Physical-mathematical model for multi-pass arc welding process/transactions of Tula State University. In Computer Technologies in Joining Materials, 3 (pp. 246–255). Tula: Tula State Technical University Publishing (in Russian). Yerofeyev, V. A., & Maslennikov, A. V. (2005). Physical-mathematical model for multi-pass arc welding process/transactions of Tula State University. In Computer Technologies in Joining Materials, 3 (pp. 246–255). Tula: Tula State Technical University Publishing (in Russian).
go back to reference Yushchenko, K. A., Chervyakov, N. O., & Kalina, P. P. (2006). Energy characteristics of low-amperage arcs. The Paton Welding Journal, 4, 17–21. Yushchenko, K. A., Chervyakov, N. O., & Kalina, P. P. (2006). Energy characteristics of low-amperage arcs. The Paton Welding Journal, 4, 17–21.
go back to reference Zaehr, J., Schnick, M., Fuessel, U., Lohse, M., & Sende, M. (2010). Numerical investigations of process gases and their influence on TIG—Welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 3, pp. 111–126). Graz: Technischen Universitaet Graz. Zaehr, J., Schnick, M., Fuessel, U., Lohse, M., & Sende, M. (2010). Numerical investigations of process gases and their influence on TIG—Welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 3, pp. 111–126). Graz: Technischen Universitaet Graz.
go back to reference Zhu, P., Lowke, J. J., Morrow, R., & Haidar, J. (1995). Prediction of anode temperatures of free burning arcs. Journal of Physics D: Applied Physics, 28, 1369–a1376. Zhu, P., Lowke, J. J., Morrow, R., & Haidar, J. (1995). Prediction of anode temperatures of free burning arcs. Journal of Physics D: Applied Physics, 28, 1369–a1376.
Metadata
Title
Energy Characteristics of Welding Heat Sources
Author
Victor A. Karkhin
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-5965-1_1

Premium Partners