Skip to main content
Top

2018 | OriginalPaper | Chapter

12. Energy Efficiency of Electrowinning

Author : Michael S. Moats

Published in: Energy Efficiency in the Minerals Industry

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The winning of high purity metal from aqueous solutions through electrodeposition is the final processing recovery step for many nonferrous metals. Direct electrical current/voltage provides the necessary driving force to promote the necessary reactions at an industrially relevant rate. Energy, especially electrical, is often the highest cost for electrowinning operations. Therefore, energy efficiency is a paramount concern for modern facilities. This chapter discusses electrical energy consumption in aqueous electrowinning with a specific focus on cell voltage and current efficiency. It also presents potential improvements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Free M, Moats M (2013) Hydrometallurgical production. In: Seetharaman S (ed) Treatise on process metallurgy volume 3: industrial processes part A. Elsevier, Oxford, pp 949–982 Free M, Moats M (2013) Hydrometallurgical production. In: Seetharaman S (ed) Treatise on process metallurgy volume 3: industrial processes part A. Elsevier, Oxford, pp 949–982
2.
go back to reference Schlesinger ME, King MJ, Sole KC et al (2011) Extractive metallurgy of copper, 5th edn. Elsevier, Oxford Schlesinger ME, King MJ, Sole KC et al (2011) Extractive metallurgy of copper, 5th edn. Elsevier, Oxford
3.
go back to reference Moats M, Guerra E, Gonzalez JA (2008) Zinc electrowinning—operating data. In: Centomo L, Collins M, Harlamovs J et al (eds) Zinc and lead metallurgy. CIM, Montreal, pp 307–314 Moats M, Guerra E, Gonzalez JA (2008) Zinc electrowinning—operating data. In: Centomo L, Collins M, Harlamovs J et al (eds) Zinc and lead metallurgy. CIM, Montreal, pp 307–314
4.
go back to reference Robinson TG, Sole KC, Sandoval S et al (2013) Copper electrowinning: 2013 world tankhouse operating data. In: Abel R, Delgado C (eds) Proceedings of copper 2013. vol V, pp 3–14 Robinson TG, Sole KC, Sandoval S et al (2013) Copper electrowinning: 2013 world tankhouse operating data. In: Abel R, Delgado C (eds) Proceedings of copper 2013. vol V, pp 3–14
5.
go back to reference Marsden JO (2008) Energy efficiency and copper hydrometallurgy. In: Young C, Taylor P, Anderson C et al (eds) Hydrometallurgy 2008 proceedings of the sixth international symposium. SME, Littleton, pp 29–42 Marsden JO (2008) Energy efficiency and copper hydrometallurgy. In: Young C, Taylor P, Anderson C et al (eds) Hydrometallurgy 2008 proceedings of the sixth international symposium. SME, Littleton, pp 29–42
6.
go back to reference Moats M, Guerra E, Siegmund A et al (2010) Primary zinc smelter operating data survey. In: Pb Zn 2010—lead-zinc 2010 symposium, held in conjunction with COM 2010, CIM, Montreal, pp 263–282 Moats M, Guerra E, Siegmund A et al (2010) Primary zinc smelter operating data survey. In: Pb Zn 2010—lead-zinc 2010 symposium, held in conjunction with COM 2010, CIM, Montreal, pp 263–282
7.
go back to reference Ettel VA (1977) Energy requirements in electrolytic winning and refining of metals. CIM Bull 70(782):179–187 Ettel VA (1977) Energy requirements in electrolytic winning and refining of metals. CIM Bull 70(782):179–187
8.
go back to reference Free ML (2013) Hydrometallurgy: fundamentals and applications. Wiley, HobokenCrossRef Free ML (2013) Hydrometallurgy: fundamentals and applications. Wiley, HobokenCrossRef
9.
go back to reference Pavlov D, Rogachev T (1986) Mechanism of the action of Ag and As on the anodic corrosion of lead and oxygen evolution at the Pb/PbO(2 − x)/H2O/O2/H2SO4 electrode system. Electrochim Acta 31(2):241–249CrossRef Pavlov D, Rogachev T (1986) Mechanism of the action of Ag and As on the anodic corrosion of lead and oxygen evolution at the Pb/PbO(2 − x)/H2O/O2/H2SO4 electrode system. Electrochim Acta 31(2):241–249CrossRef
10.
go back to reference Nikoloski AN, Nicol MJ (2007) Effect of cobalt ions on the performance of lead anodes used for the electrowinning of copper—a literature review. Min Process Extr Metall Rev 29(2):143–172CrossRef Nikoloski AN, Nicol MJ (2007) Effect of cobalt ions on the performance of lead anodes used for the electrowinning of copper—a literature review. Min Process Extr Metall Rev 29(2):143–172CrossRef
11.
go back to reference Abbey CE, Moats MS (2017) Effect of cobalt and iron concentration on the potential for oxygen evolution from Pb-Ca-Sn anodes in synthetic copper electrowinning electrolytes. In: Wang S, Free ML, Alam S et al (eds) Applications of process engineering principles in materials processing, energy and environmental technologies. Springer, Berlin, pp 89–95CrossRef Abbey CE, Moats MS (2017) Effect of cobalt and iron concentration on the potential for oxygen evolution from Pb-Ca-Sn anodes in synthetic copper electrowinning electrolytes. In: Wang S, Free ML, Alam S et al (eds) Applications of process engineering principles in materials processing, energy and environmental technologies. Springer, Berlin, pp 89–95CrossRef
12.
go back to reference Moats MS (2008) Will lead-based anodes ever be replaced in aqueous electrowinning? JOM 60(10):46–49CrossRef Moats MS (2008) Will lead-based anodes ever be replaced in aqueous electrowinning? JOM 60(10):46–49CrossRef
13.
go back to reference Sandoval S, Clayton C, Dominguez S et al (2010) Development and commercialization of an alternative anode for copper electrowinning. In: Copper 2010 proceedings, vol 4, GDMB, Clausthal-Zellerfeld, pp 1635–1648 Sandoval S, Clayton C, Dominguez S et al (2010) Development and commercialization of an alternative anode for copper electrowinning. In: Copper 2010 proceedings, vol 4, GDMB, Clausthal-Zellerfeld, pp 1635–1648
14.
go back to reference Brown AP, Loutfy RO, Cook GM (1980) The electrorefining of copper from a cuprous ion complexing electrolyte: II. Experimental comparison of possible alternative electrolytes and preliminary cost engineering analysis. ANL/OEPM-80-2 Brown AP, Loutfy RO, Cook GM (1980) The electrorefining of copper from a cuprous ion complexing electrolyte: II. Experimental comparison of possible alternative electrolytes and preliminary cost engineering analysis. ANL/OEPM-80-2
15.
go back to reference Kerby RC (1984) Application of polarization measurements to the control of zinc electrolyte quality for electrowinning. In: Warren IH (ed) Application of polarization measurements in the control of metal deposition. Elsevier, Amsterdam, pp 84–132 Kerby RC (1984) Application of polarization measurements to the control of zinc electrolyte quality for electrowinning. In: Warren IH (ed) Application of polarization measurements in the control of metal deposition. Elsevier, Amsterdam, pp 84–132
16.
go back to reference Adcock PA, Adeloju SB, Newman OM (2002) Measurement of polarization parameters impacting on electrodeposit morphology I: theory and development of technique. J Appl Electrochem 32(10):1101–1107CrossRef Adcock PA, Adeloju SB, Newman OM (2002) Measurement of polarization parameters impacting on electrodeposit morphology I: theory and development of technique. J Appl Electrochem 32(10):1101–1107CrossRef
17.
go back to reference Stantke P (1999) Guar concentration measurement with the CollaMat system. In: Dutrizac JE, Li J, Ramachandran V (eds) Electrorefining and electrowinning of copper: proceedings of the Copper 99—Cobre 99 international conference, vol III, TMS, Warrendale, pp 643–651 Stantke P (1999) Guar concentration measurement with the CollaMat system. In: Dutrizac JE, Li J, Ramachandran V (eds) Electrorefining and electrowinning of copper: proceedings of the Copper 99—Cobre 99 international conference, vol III, TMS, Warrendale, pp 643–651
18.
go back to reference Luyima A, Moats MS, Cui W, Heckman C (2016) Examination of copper electrowinning smoothing agents. Part II: fundamental electrochemical examination of DXG-F7. Miner Metall Process 33(1):14–22 Luyima A, Moats MS, Cui W, Heckman C (2016) Examination of copper electrowinning smoothing agents. Part II: fundamental electrochemical examination of DXG-F7. Miner Metall Process 33(1):14–22
19.
go back to reference Biswas AK, Davenport WG (1980) Extractive metallurgy of copper, 2nd edn. Pergammon Press, Oxford Biswas AK, Davenport WG (1980) Extractive metallurgy of copper, 2nd edn. Pergammon Press, Oxford
20.
go back to reference Guerra E, Bestetti M (2006) Physicochemical properties of ZnSO4-H2SO4-H2O electrolytes of relevance to zinc electrowinning. J Chem Eng Data 51(5):1491–1497CrossRef Guerra E, Bestetti M (2006) Physicochemical properties of ZnSO4-H2SO4-H2O electrolytes of relevance to zinc electrowinning. J Chem Eng Data 51(5):1491–1497CrossRef
21.
go back to reference Boon C, Fraser R, Johnston T, Robinson D (2013) Comparison of intercell contact bars for electrowinning plants. In: Battle T, Moats M, Cocalia V (eds) Ni-Co 2013. Wiley, Hoboken, pp 177–189 Boon C, Fraser R, Johnston T, Robinson D (2013) Comparison of intercell contact bars for electrowinning plants. In: Battle T, Moats M, Cocalia V (eds) Ni-Co 2013. Wiley, Hoboken, pp 177–189
22.
go back to reference Ashford B, Ebert WA, Vega FDM et al (2011) Double contact bar insulator assembly for electrowinning of a metal and methods of use thereof. U.S. Patent 7,993,501, 9 Aug 2011 Ashford B, Ebert WA, Vega FDM et al (2011) Double contact bar insulator assembly for electrowinning of a metal and methods of use thereof. U.S. Patent 7,993,501, 9 Aug 2011
23.
go back to reference Wiechmann EP, Morales AS, Aqueveque P et al (2015) On the design robustness and long term performance of the most used electrodes in the copper electrowining industry. In: Industry applications society annual meeting, 2015 IEEE, pp 1–8 Wiechmann EP, Morales AS, Aqueveque P et al (2015) On the design robustness and long term performance of the most used electrodes in the copper electrowining industry. In: Industry applications society annual meeting, 2015 IEEE, pp 1–8
24.
go back to reference Mackinnon DJ, Brannen JM, Fenn PL (1987) Characterization of impurity effects in zinc electrowinning from industrial acid sulphate electrolyte. J Appl Electrochem 17:1129–1143CrossRef Mackinnon DJ, Brannen JM, Fenn PL (1987) Characterization of impurity effects in zinc electrowinning from industrial acid sulphate electrolyte. J Appl Electrochem 17:1129–1143CrossRef
25.
go back to reference Ault R, Frazer EJ (1988) Effects of certain impurities on zinc electrowinning in high-purity synthetic solutions. J Appl Electrochem 18:583–589CrossRef Ault R, Frazer EJ (1988) Effects of certain impurities on zinc electrowinning in high-purity synthetic solutions. J Appl Electrochem 18:583–589CrossRef
26.
go back to reference Robinson DJ, O’Keefe TJ (1976) On the effects of antimony and glue on zinc electrocrystallization behavior. J Appl Electrochem 6:1–7CrossRef Robinson DJ, O’Keefe TJ (1976) On the effects of antimony and glue on zinc electrocrystallization behavior. J Appl Electrochem 6:1–7CrossRef
27.
go back to reference Parada TF, Asselin E (2009) Reducing power consumption in zinc electrowinning. JOM 61:54–58CrossRef Parada TF, Asselin E (2009) Reducing power consumption in zinc electrowinning. JOM 61:54–58CrossRef
28.
go back to reference Anderson TN, Wright CN, Richards KJ (1973) Important electro-chemical aspects of electrowinning copper from acid leach solutions. In: Evans DJI, Shoemaker RS (eds) International symposium on hydrometallurgy, New York, pp 171–202 Anderson TN, Wright CN, Richards KJ (1973) Important electro-chemical aspects of electrowinning copper from acid leach solutions. In: Evans DJI, Shoemaker RS (eds) International symposium on hydrometallurgy, New York, pp 171–202
29.
go back to reference Grunenfelder JG (1960) The hydrometallurgy of copper. In: Butts A (ed) Copper: the science and technology of the metal, its alloys and compounds. ACS, Reinhold, pp 300–337 Grunenfelder JG (1960) The hydrometallurgy of copper. In: Butts A (ed) Copper: the science and technology of the metal, its alloys and compounds. ACS, Reinhold, pp 300–337
30.
go back to reference Mantell CL (1960) Electrochemical engineering. McGraw-Hills, New York, p 198 Mantell CL (1960) Electrochemical engineering. McGraw-Hills, New York, p 198
31.
go back to reference Khouraibchia Y, Moats M (2009) Effective diffusivity of ferric ions and current efficiency in stagnant synthetic copper electrowinning solutions. Miner Metall Process 26:176–190 Khouraibchia Y, Moats M (2009) Effective diffusivity of ferric ions and current efficiency in stagnant synthetic copper electrowinning solutions. Miner Metall Process 26:176–190
32.
go back to reference Khouraibchia Y, Moats M (2010) Evaluation of copper electrowinning parameters on current efficiency and energy consumption using surface response methodology. In: Doyle FM, Woods R, Kesall GH (eds) Electrochemistry in mineral and metal processing VIII: ESC Trans, vol 28 No. 6, pp 295–306 Khouraibchia Y, Moats M (2010) Evaluation of copper electrowinning parameters on current efficiency and energy consumption using surface response methodology. In: Doyle FM, Woods R, Kesall GH (eds) Electrochemistry in mineral and metal processing VIII: ESC Trans, vol 28 No. 6, pp 295–306
33.
go back to reference Miller G (2011) Methods of managing manganese effects on copper solvent extraction plant operations. Solvent Extr Ion Exch 29(5–6):837–853CrossRef Miller G (2011) Methods of managing manganese effects on copper solvent extraction plant operations. Solvent Extr Ion Exch 29(5–6):837–853CrossRef
34.
go back to reference Joy S, Staley A, Moats M et al (2010) Understanding and improvement of electrowinning current efficiency at Freeport-McMoRan Bagdad. In: Copper 2010 proceedings, vol 4, GDMB, Clausthal-Zellerfeld, pp 1379–1392 Joy S, Staley A, Moats M et al (2010) Understanding and improvement of electrowinning current efficiency at Freeport-McMoRan Bagdad. In: Copper 2010 proceedings, vol 4, GDMB, Clausthal-Zellerfeld, pp 1379–1392
35.
go back to reference El-Nagar GA, Mohammad AM, El-Deab MS et al (2013) Electrocatalysis by design: enhanced electrooxidation of formic acid at platinum nanoparticles–nickel oxide nanoparticles binary catalysts. Electrochim Acta 94:62–71CrossRef El-Nagar GA, Mohammad AM, El-Deab MS et al (2013) Electrocatalysis by design: enhanced electrooxidation of formic acid at platinum nanoparticles–nickel oxide nanoparticles binary catalysts. Electrochim Acta 94:62–71CrossRef
36.
go back to reference Tang Y, Chen Y, Zhou P et al (2010) Electro-catalytic performance of PdCo bimetallic hollow nano-spheres for the oxidation of formic acid. J Solid State Electrochem 14(11):2077–2082CrossRef Tang Y, Chen Y, Zhou P et al (2010) Electro-catalytic performance of PdCo bimetallic hollow nano-spheres for the oxidation of formic acid. J Solid State Electrochem 14(11):2077–2082CrossRef
37.
go back to reference Gulla AF, Krasovic J (2012) Gas-diffusion electrode. US Patent Application 14/342,887, 14 Aug 2014 Gulla AF, Krasovic J (2012) Gas-diffusion electrode. US Patent Application 14/342,887, 14 Aug 2014
38.
go back to reference Izawa Y, Ogata S, Uno M et al (2015) Oxygen gas diffusion cathode, electrolytic cell employing same, method of producing chlorine gas and method of producing sodium hydroxide. US Patent 9,1754,10, 3 Nov 2015 Izawa Y, Ogata S, Uno M et al (2015) Oxygen gas diffusion cathode, electrolytic cell employing same, method of producing chlorine gas and method of producing sodium hydroxide. US Patent 9,1754,10, 3 Nov 2015
39.
go back to reference Mishra K, Cooper WC (1984) Electrochemical aspects of the direct electrowinning copper from sulfuric acid leach solutions in the presence of iron using gas sparging. In: Robinson D, James SE (eds) Anodes for electrowinning. TMS-AIME, Warrendale, pp 13–36 Mishra K, Cooper WC (1984) Electrochemical aspects of the direct electrowinning copper from sulfuric acid leach solutions in the presence of iron using gas sparging. In: Robinson D, James SE (eds) Anodes for electrowinning. TMS-AIME, Warrendale, pp 13–36
40.
go back to reference Cooke AV, Chilton JP, Fray DJ (1985) Ferrous/ferric depolarization in copper electrowinning: mass transport and current efficiency considerations. In: Bautista RG, Wesely RJ (eds) Energy reduction techniques in metal electrochemical processes. TMS, Warrendale, pp 111–141 Cooke AV, Chilton JP, Fray DJ (1985) Ferrous/ferric depolarization in copper electrowinning: mass transport and current efficiency considerations. In: Bautista RG, Wesely RJ (eds) Energy reduction techniques in metal electrochemical processes. TMS, Warrendale, pp 111–141
41.
go back to reference Panda B, Das SC (2001) Electrowinning of copper from sulfate electrolyte in presence of sulfurous acid. Hydrometallurgy 59(1):55–67CrossRef Panda B, Das SC (2001) Electrowinning of copper from sulfate electrolyte in presence of sulfurous acid. Hydrometallurgy 59(1):55–67CrossRef
42.
go back to reference Subbaiah T, Singh P, Hefter G et al (2000) Sulphurous acid as anodic depolarizer in copper electrowinning part II. J Appl Electrochem 30(2):181–186CrossRef Subbaiah T, Singh P, Hefter G et al (2000) Sulphurous acid as anodic depolarizer in copper electrowinning part II. J Appl Electrochem 30(2):181–186CrossRef
43.
go back to reference Robinson DJ (1984) SO2 electrowinning in copper hydrometallurgy for energy conservation. JOM 36(1):43–47CrossRef Robinson DJ (1984) SO2 electrowinning in copper hydrometallurgy for energy conservation. JOM 36(1):43–47CrossRef
44.
go back to reference Dawson JN, Singh P, Hefter G (1999) The effects of sulfur dioxide on the energy consumption and nature of electrowon copper. Paper presented at PACRIM ‘99 Congress, Bali, Indonesia, 10–13 Oct 1999 Dawson JN, Singh P, Hefter G (1999) The effects of sulfur dioxide on the energy consumption and nature of electrowon copper. Paper presented at PACRIM ‘99 Congress, Bali, Indonesia, 10–13 Oct 1999
45.
go back to reference Sandoval SP, Lei KPV (1993) Evaluation of the ferrous/ferric-sulfur dioxide anode reaction for integration into the copper leaching-solvent extraction-electrowinning circuit. In: Hiskey JB, Warren GW (eds) Proceedings of Milton E. Wadsworth (IV) International symposium on hydrometallurgy, Salt Lake City, UT pp 1091–1105 Sandoval SP, Lei KPV (1993) Evaluation of the ferrous/ferric-sulfur dioxide anode reaction for integration into the copper leaching-solvent extraction-electrowinning circuit. In: Hiskey JB, Warren GW (eds) Proceedings of Milton E. Wadsworth (IV) International symposium on hydrometallurgy, Salt Lake City, UT pp 1091–1105
46.
go back to reference Dolinar WJ, Sandoval SP (1995) Copper electrowinning in the absence of acid misting using the ferrous/ferric-sulfur dioxide anode reaction—a pilot study. Trans Soc Min Metall Explor 298:1936–1942 Dolinar WJ, Sandoval SP (1995) Copper electrowinning in the absence of acid misting using the ferrous/ferric-sulfur dioxide anode reaction—a pilot study. Trans Soc Min Metall Explor 298:1936–1942
47.
go back to reference Sandoval SP, Cook PR, Hoffman, WP et al (2008) Method and apparatus for electrowinning copper using the ferrous/ferric anode reaction and a flow-through anode. US Patent 7,368,049, 6 May 2008 Sandoval SP, Cook PR, Hoffman, WP et al (2008) Method and apparatus for electrowinning copper using the ferrous/ferric anode reaction and a flow-through anode. US Patent 7,368,049, 6 May 2008
48.
go back to reference Sandoval SP, Robinson TG, Cook PR (2008) Method and apparatus for electrowinning copper using the ferrous/ferric anode reaction. US Patent 7,378,011, 27 May 2008 Sandoval SP, Robinson TG, Cook PR (2008) Method and apparatus for electrowinning copper using the ferrous/ferric anode reaction. US Patent 7,378,011, 27 May 2008
49.
go back to reference Sandoval S, Cook P, Morales C et al (2010) Demonstration of the ferrous/ferric anode reaction for copper electrowinning. In: Copper 2010 proceedings, vol 4, GDMB, Clausthal-Zellerfeld, pp 1617–1634 Sandoval S, Cook P, Morales C et al (2010) Demonstration of the ferrous/ferric anode reaction for copper electrowinning. In: Copper 2010 proceedings, vol 4, GDMB, Clausthal-Zellerfeld, pp 1617–1634
50.
go back to reference Edmiston KJ (1983) An update on chloride hydrometallurgical processes for sulfide concentrates. SME pre-print 84–114, SME, Littleton, CO Edmiston KJ (1983) An update on chloride hydrometallurgical processes for sulfide concentrates. SME pre-print 84–114, SME, Littleton, CO
51.
go back to reference Rodchanarowan A, Sarswat PK, Bhide R, Free ML (2014) Production of copper from minerals through controlled and sustainable electrochemistry. Electrochim Acta 140:447–456CrossRef Rodchanarowan A, Sarswat PK, Bhide R, Free ML (2014) Production of copper from minerals through controlled and sustainable electrochemistry. Electrochim Acta 140:447–456CrossRef
52.
go back to reference Muir D, Senanayake G (1984) Refining of clear copper powders by the Parker process: a comparison of the chemistry of copper impurities in chloride and sulfate media. In: Extractive metallurgy symposium, vol 36, 12–14 Nov 1984, Melbourne, Australia, pp 353–359 Muir D, Senanayake G (1984) Refining of clear copper powders by the Parker process: a comparison of the chemistry of copper impurities in chloride and sulfate media. In: Extractive metallurgy symposium, vol 36, 12–14 Nov 1984, Melbourne, Australia, pp 353–359
53.
go back to reference Crundwell F, Moats M, Ramachandran V et al (2011) Extractive metallurgy of nickel, cobalt and platinum group metals. Elsevier, Oxford Crundwell F, Moats M, Ramachandran V et al (2011) Extractive metallurgy of nickel, cobalt and platinum group metals. Elsevier, Oxford
54.
go back to reference Morimitsu M, Oshiumi N (2009) Accelerated oxygen evolution and suppressed MnOOH deposition on amorphous IrO2-Ta2O5 coatings. Chem Lett 38(8):822–823CrossRef Morimitsu M, Oshiumi N (2009) Accelerated oxygen evolution and suppressed MnOOH deposition on amorphous IrO2-Ta2O5 coatings. Chem Lett 38(8):822–823CrossRef
55.
go back to reference Morimitsu M, Oshiumi N, Yamaguchi T (2010) Amorphous oxide coated anode for energy saving of zinc electrowinning. In: Pb Zn 2010—lead-Zinc 2010 symposium, held in conjunction with COM 2010, CIM, Montreal, pp 813–818 Morimitsu M, Oshiumi N, Yamaguchi T (2010) Amorphous oxide coated anode for energy saving of zinc electrowinning. In: Pb Zn 2010—lead-Zinc 2010 symposium, held in conjunction with COM 2010, CIM, Montreal, pp 813–818
56.
go back to reference Sandoval S, Garcia R, Neff T et al (2013) Operation of alternative anodes at Chino SXEW. In: Abel R, Delgado C (eds) Proceedings of copper 2013, vol V, pp 145–152 Sandoval S, Garcia R, Neff T et al (2013) Operation of alternative anodes at Chino SXEW. In: Abel R, Delgado C (eds) Proceedings of copper 2013, vol V, pp 145–152
57.
go back to reference Fiorucci A, Calderara A, Iacopetti L et al (2013) The De Nora solution–part I, DSA® anodes for copper electrowinning. In: Abel R, Delgado C (eds) Proceedings of copper 2013, vol V, pp 107–118 Fiorucci A, Calderara A, Iacopetti L et al (2013) The De Nora solution–part I, DSA® anodes for copper electrowinning. In: Abel R, Delgado C (eds) Proceedings of copper 2013, vol V, pp 107–118
58.
go back to reference Morimitsu M, Yamaguchi T, Oshiumi N, et al (2011) Energy-efficient electrowinning process with smart anode comprising nanooxide catalyst. In: Proceedings of European metallurgical conference, vol 3, pp 975–984 Morimitsu M, Yamaguchi T, Oshiumi N, et al (2011) Energy-efficient electrowinning process with smart anode comprising nanooxide catalyst. In: Proceedings of European metallurgical conference, vol 3, pp 975–984
59.
go back to reference Morimitsu M (2012) Performance and commercialization of the smart anode, MSA™, for environmentally friendly electrometallurgical process. In: Free M, Moats M, Houlachi G et al (eds) Electrometallurgy 2012. Wiley, New York, pp 49–54CrossRef Morimitsu M (2012) Performance and commercialization of the smart anode, MSA™, for environmentally friendly electrometallurgical process. In: Free M, Moats M, Houlachi G et al (eds) Electrometallurgy 2012. Wiley, New York, pp 49–54CrossRef
60.
go back to reference Zhang T, Morimitsu M (2012) A novel oxygen evolution anode for electrowinning of non-ferrous metals. In: Free M, Moats M, Houlachi G et al (eds) Electrometallurgy 2012. Wiley, New York, pp 29–34CrossRef Zhang T, Morimitsu M (2012) A novel oxygen evolution anode for electrowinning of non-ferrous metals. In: Free M, Moats M, Houlachi G et al (eds) Electrometallurgy 2012. Wiley, New York, pp 29–34CrossRef
61.
go back to reference Moats MS (2010) MnO2 deposition on coated titanium anodes in copper electrowinning solutions. ERZMETALL 63(6):286–291 Moats MS (2010) MnO2 deposition on coated titanium anodes in copper electrowinning solutions. ERZMETALL 63(6):286–291
Metadata
Title
Energy Efficiency of Electrowinning
Author
Michael S. Moats
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-54199-0_12