Skip to main content
Top
Published in: Wireless Personal Communications 3/2017

16-12-2016

Energy-Efficient Uplink Resource Allocation Based on Game Theory in Cognitive Small Cell Networks

Authors: Ya-Nan Jia, Dian-Wu Yue

Published in: Wireless Personal Communications | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, resource allocation for energy-efficient uplink communications in cognitive small cell networks is studied. We formulate the entire network energy efficiency (EE) maximization problem for the joint allocation of small cell base stations (SCBSs), spectrum resources, and transmission power in an open access mode. Since the master optimization problem belong to integer combinatorial fractional program and is essentially NP-hard, we develop a low-complexity alternative as a suboptimal solution by decomposing the master optimization issue into two sub-problems: selection of SCBSs and spectrum resources, and power allocation. The selection sub-problem of SCBSs and spectrum resources for cognitive small cell users (CSCUs) is modeled as a potential game from the viewpoints of reducing system interference and improving received signal strength. We formulate the power allocation sub-problem as a non-cooperative game which can be solved in a distributed fashion. But it is also a non-convex optimization problem in fractional form to solve the optimal power strategies based on maximizing the EE on a specific channel. We transform the nonlinear fractional programming issue into an equivalent parametric programming in subtractive form. For obtaining a social optimum power Nash equilibrium (NE), we propose a novel price-based double-loop iteration algorithm to get the transmission power strategies, which take the form of water-filling structure among different CSCUs over a same channel. Simulation results show that the proposed algorithms can converge to NE, and polish up the EE of the overall system significantly.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen, S., & Zhao, J. (2014). The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Communications Magazine, 52(5), 36–43.CrossRef Chen, S., & Zhao, J. (2014). The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Communications Magazine, 52(5), 36–43.CrossRef
2.
go back to reference Hoydis, J., Kobayashi, M., & Debbah, Me. (2011). Green small-cell networks: A pricing- and energy-efficient way of meeting the future traffic demands. IEEE Vehicular Technology Magazine, 6(1), 37–43.CrossRef Hoydis, J., Kobayashi, M., & Debbah, Me. (2011). Green small-cell networks: A pricing- and energy-efficient way of meeting the future traffic demands. IEEE Vehicular Technology Magazine, 6(1), 37–43.CrossRef
3.
go back to reference Fehske, A. J., Viering, I., Voigt, J., Sartori, C., Redana, S., & Fettweis, G. P. (2014). Small-cell self-organizing wireless networks. Proceedings of the IEEE, 102(3), 334–350.CrossRef Fehske, A. J., Viering, I., Voigt, J., Sartori, C., Redana, S., & Fettweis, G. P. (2014). Small-cell self-organizing wireless networks. Proceedings of the IEEE, 102(3), 334–350.CrossRef
4.
go back to reference Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
5.
go back to reference Cheng, S.-M., Lien, S.-Y., Chu, F.-S., & Chen, K.-C. (2011). On exploiting cognitive radio to mitigate interference in macro/femto heterogeneous networks. IEEE Wireless Communication, 18(3), 40–47.CrossRef Cheng, S.-M., Lien, S.-Y., Chu, F.-S., & Chen, K.-C. (2011). On exploiting cognitive radio to mitigate interference in macro/femto heterogeneous networks. IEEE Wireless Communication, 18(3), 40–47.CrossRef
6.
go back to reference Wildemeersch, M., Quek, T. Q. S., Slump, C. H., & Rabbachin, A. (2013). Cognitive small cell networks: Energy efficiency and trade-offs. IEEE Transactions on Communications, 61(9), 4016–4029.CrossRef Wildemeersch, M., Quek, T. Q. S., Slump, C. H., & Rabbachin, A. (2013). Cognitive small cell networks: Energy efficiency and trade-offs. IEEE Transactions on Communications, 61(9), 4016–4029.CrossRef
7.
go back to reference Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRefMATH Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRefMATH
8.
go back to reference Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2010). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 48(1), 40–62. Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2010). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 48(1), 40–62.
9.
go back to reference Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.CrossRef Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.CrossRef
10.
go back to reference Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive tadios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.CrossRef Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive tadios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.CrossRef
11.
go back to reference Lu, L., He, D., Yu, X., & Li, G. Y. (2013). Energy-efficient resource allocation for cognitive radio networks. In Proceedings of the IEEE global communications conference (pp. 1026–1031). Lu, L., He, D., Yu, X., & Li, G. Y. (2013). Energy-efficient resource allocation for cognitive radio networks. In Proceedings of the IEEE global communications conference (pp. 1026–1031).
12.
go back to reference Bharucha, Z., Calvanese, E., Chen, J., Chu, X., Feki, A., Domenico, A. D., et al. (2012). Small cell deployments: Recent advances and research challenges. arXiv:1211.0575. Bharucha, Z., Calvanese, E., Chen, J., Chu, X., Feki, A., Domenico, A. D., et al. (2012). Small cell deployments: Recent advances and research challenges. arXiv:​1211.​0575.
13.
go back to reference Wang, W., Yu, G., & Huang, A. (2013). Cognitive radio enhanced interference coordination for femtocell networks. IEEE Communications Magazine, 51(6), 37–43.CrossRef Wang, W., Yu, G., & Huang, A. (2013). Cognitive radio enhanced interference coordination for femtocell networks. IEEE Communications Magazine, 51(6), 37–43.CrossRef
14.
go back to reference Ahmed, F., Dowhuszko, A. A., & Tirkkonen, O. (2012). Distributed algorithm for downlink resource allocation in multicarrier small cell networks. In Proceedings of the international conference on communication (pp. 6802–6808). Ahmed, F., Dowhuszko, A. A., & Tirkkonen, O. (2012). Distributed algorithm for downlink resource allocation in multicarrier small cell networks. In Proceedings of the international conference on communication (pp. 6802–6808).
15.
go back to reference Feng, D., Jiang, C., Lim, G., Leonard, J., Cimini, J., Feng, G., et al. (2013). A survey of energy-efficient wireless communications. IEEE Communications Surveys & Tutorials, 15(1), 167–178.CrossRef Feng, D., Jiang, C., Lim, G., Leonard, J., Cimini, J., Feng, G., et al. (2013). A survey of energy-efficient wireless communications. IEEE Communications Surveys & Tutorials, 15(1), 167–178.CrossRef
16.
go back to reference Rao, J. B., & Fapojuwo, Ah O. (2014). A survey of energy efficient resource management techniques for multicell cellular networks. IEEE Communications Surveys & Tutorials, 16(1), 154–180.CrossRef Rao, J. B., & Fapojuwo, Ah O. (2014). A survey of energy efficient resource management techniques for multicell cellular networks. IEEE Communications Surveys & Tutorials, 16(1), 154–180.CrossRef
17.
go back to reference Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 94–101.CrossRef Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 94–101.CrossRef
18.
go back to reference Jiang, Z., & Mao, S. Access strategy and dynamic downlink resource allocation for femtocell networks. In Proceedings of the 2013 IEEE global wireless communication conference (GLOBECOM) (pp. 3528–353). Jiang, Z., & Mao, S. Access strategy and dynamic downlink resource allocation for femtocell networks. In Proceedings of the 2013 IEEE global wireless communication conference (GLOBECOM) (pp. 3528–353).
19.
go back to reference Liu, Y., Cai, L. X., Shen, X., & Luo, H. (2013). Deploying cognitive cellular networks under dynamic resource management. IEEE Wireless Communications, 20(2), 82–88.CrossRef Liu, Y., Cai, L. X., Shen, X., & Luo, H. (2013). Deploying cognitive cellular networks under dynamic resource management. IEEE Wireless Communications, 20(2), 82–88.CrossRef
20.
go back to reference Li, D., & Gross, J. Distributed TV spectrum allocation for cognitive cellular network under game theoretical framework. In Proceedings of the 2012 IEEE international symposium on dynamic spectrum access networks (DYSPAN) (pp. 327–338). Li, D., & Gross, J. Distributed TV spectrum allocation for cognitive cellular network under game theoretical framework. In Proceedings of the 2012 IEEE international symposium on dynamic spectrum access networks (DYSPAN) (pp. 327–338).
21.
go back to reference Semasinghe, P., Zhu, K., & Hossain, E. Distributed resource allocation for self-organizing small cell networks: an evolutionary game approach. In Proceedings of the 2013 IEEE globecom workshops (pp. 702–707). Semasinghe, P., Zhu, K., & Hossain, E. Distributed resource allocation for self-organizing small cell networks: an evolutionary game approach. In Proceedings of the 2013 IEEE globecom workshops (pp. 702–707).
22.
go back to reference Bennis, M., Perlaza, S. M., Blasco, P., Han, Z., & Poor, H. V. (2013). Self-organization in small cell networks: A reinforcement learning approach. IEEE Transactions on Wireless Communications, 21(7), 3202–3212.CrossRef Bennis, M., Perlaza, S. M., Blasco, P., Han, Z., & Poor, H. V. (2013). Self-organization in small cell networks: A reinforcement learning approach. IEEE Transactions on Wireless Communications, 21(7), 3202–3212.CrossRef
23.
go back to reference Jorswieck, E. A., Larsson, E. G., Luise, M., & Poor, H. V. (2009). Game theory in signal processing and communications. IEEE Signal Processing Magazine, 26(5), 17–132.CrossRef Jorswieck, E. A., Larsson, E. G., Luise, M., & Poor, H. V. (2009). Game theory in signal processing and communications. IEEE Signal Processing Magazine, 26(5), 17–132.CrossRef
24.
go back to reference Scutari, G., Palomar, D. P., Facchinei, F., & Pang, J.-S. (2010). Convex optimization, game theory, and variatonal inequality theory. IEEE Signal Processing Magazine, 27(3), 35–49.CrossRef Scutari, G., Palomar, D. P., Facchinei, F., & Pang, J.-S. (2010). Convex optimization, game theory, and variatonal inequality theory. IEEE Signal Processing Magazine, 27(3), 35–49.CrossRef
25.
go back to reference Nie, N., & Comaniciu, C. Adaptive channel allocation spectrum etiquette for cognitive radio networks. In Proceedings of the 2005 first IEEE international symposium on dynamic spectrum access networks (DYSPAN) (pp. 269–278). Nie, N., & Comaniciu, C. Adaptive channel allocation spectrum etiquette for cognitive radio networks. In Proceedings of the 2005 first IEEE international symposium on dynamic spectrum access networks (DYSPAN) (pp. 269–278).
26.
go back to reference Wang, F., Krunz, M., & Cui, S. (2008). Price-based spectrum management in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 74–87.CrossRef Wang, F., Krunz, M., & Cui, S. (2008). Price-based spectrum management in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 74–87.CrossRef
27.
go back to reference Pang, J.-S., Scutari, G., Facchinei, F., & Wang, C. (2008). Distributed power allocation with rate constraints in gaussian parallel interference channels. IEEE Transactions on Information Theory, 54(8), 3471–3489.MathSciNetCrossRefMATH Pang, J.-S., Scutari, G., Facchinei, F., & Wang, C. (2008). Distributed power allocation with rate constraints in gaussian parallel interference channels. IEEE Transactions on Information Theory, 54(8), 3471–3489.MathSciNetCrossRefMATH
28.
go back to reference Sardellitti, S., & Barbarossa, S. (2013). Joint optimization of collaborative sensing and radio resource allocation in small-cell networks. IEEE Transactions on Signal Processing, 61(18), 4506–4520.MathSciNetCrossRef Sardellitti, S., & Barbarossa, S. (2013). Joint optimization of collaborative sensing and radio resource allocation in small-cell networks. IEEE Transactions on Signal Processing, 61(18), 4506–4520.MathSciNetCrossRef
29.
go back to reference Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 11(9), 3292–3304.CrossRef Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 11(9), 3292–3304.CrossRef
30.
go back to reference Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity. IEEE Transactions on Wireless Communications, 11(10), 3618–3631.CrossRef Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity. IEEE Transactions on Wireless Communications, 11(10), 3618–3631.CrossRef
31.
go back to reference Kim, S., Lee, B. G., & Park, D. (2014). Energy-per-bit minimized radio resource allocation in heterogeneous networks. IEEE Transactions on Wireless Communications, 13(4), 1862–1873.CrossRef Kim, S., Lee, B. G., & Park, D. (2014). Energy-per-bit minimized radio resource allocation in heterogeneous networks. IEEE Transactions on Wireless Communications, 13(4), 1862–1873.CrossRef
32.
go back to reference Jing, X., Mau, S.-C., & Matyas, R. Reactive cognitive radio algorithms for co-existence between IEEE 802.11b and 802.16a networks. In Proceedings of the 2005 IEEE global telecommunicaion conference (pp. 2465–2469). Jing, X., Mau, S.-C., & Matyas, R. Reactive cognitive radio algorithms for co-existence between IEEE 802.11b and 802.16a networks. In Proceedings of the 2005 IEEE global telecommunicaion conference (pp. 2465–2469).
33.
go back to reference Jia, Y.-N., & Yue, D.-W. (2014). Dynamic overlapped spectrum allocation based on potential game in cognitive radio networks. High Technology Letters, 20(4), 401–408. Jia, Y.-N., & Yue, D.-W. (2014). Dynamic overlapped spectrum allocation based on potential game in cognitive radio networks. High Technology Letters, 20(4), 401–408.
35.
go back to reference Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefMATH Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefMATH
36.
go back to reference Scutari, G., Palomar, D. P., & Barbarossa, S. (2008). Asynchronous iterative water-filling for gaussian frequency-selective interference channels. IEEE Transactions on Information Theory, 54(7), 2868–2878.MathSciNetCrossRefMATH Scutari, G., Palomar, D. P., & Barbarossa, S. (2008). Asynchronous iterative water-filling for gaussian frequency-selective interference channels. IEEE Transactions on Information Theory, 54(7), 2868–2878.MathSciNetCrossRefMATH
37.
go back to reference Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRef Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRef
38.
go back to reference Cho, Y. S., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with MATLAB ® . New York: Wiley.CrossRef Cho, Y. S., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with MATLAB ® . New York: Wiley.CrossRef
Metadata
Title
Energy-Efficient Uplink Resource Allocation Based on Game Theory in Cognitive Small Cell Networks
Authors
Ya-Nan Jia
Dian-Wu Yue
Publication date
16-12-2016
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2017
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3927-z

Other articles of this Issue 3/2017

Wireless Personal Communications 3/2017 Go to the issue