Skip to main content
Top

2017 | OriginalPaper | Chapter

Energy Harvesting in Nanonetworks

Authors : Shahram Mohrehkesh, Michele C. Weigle, Sajal K. Das

Published in: Modeling, Methodologies and Tools for Molecular and Nano-scale Communications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The goal of this chapter is to review the process, issues, and challenges of energy harvesting in nanonetworks, composed of nanonodes that are nano to micro meters in size. A nanonode consisting of nan-memory, a nano-processor, nano-harvesters, ultra nano-capacitor, and a nano-transceiver harvests the energy required for its operations, such as processing and communication. The energy harvesting process in nanonetworks differs from traditional networks (e.g. wireless sensor networks, RFID) due to their unique characteristics such as nanoscale, communication model, and molecular operating environment. After reviewing the energy harvesting process and sources, we introduce the communication model, which is the main source of energy consumption for nanonodes. This is followed by a discussion on the models for joint energy harvesting and consumption processes. Finally, we describe approaches for optimizing the energy consumption process, which includes optimum data packet design, optimal energy utilization, energy consumption scheduling, and energy-harvesting-aware protocols.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Lexicographic optimization is a form of multi-criteria (multi-objective) optimization in which the various objectives under consideration cannot be quantitatively traded off between each other, at least not in a meaningful and numerically tractable way. The lexicographic method assumes that the objectives can be ranked in the order of importance. It can be assumed, without loss of generality, that the k objective functions are in the order of importance so that \(f_1\) is the most important and \(f_k\) the least important to the decision maker. Then, the lexicographic method consists of solving a sequence of single objective optimization problems [47].
 
Literature
3.
go back to reference Avouris P (2009) Carbon nanotube electronics and photonics. Phys Today 62, 3440 Avouris P (2009) Carbon nanotube electronics and photonics. Phys Today 62, 3440
6.
go back to reference Christ A, Douglas M, Roman J, Cooper E, Sample A, Waters B, Smith J, Kuster N (2013) Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits. IEEE Trans Electromag Compatib 55(2):265–274. doi:10.1109/TEMC.2012.2219870 Christ A, Douglas M, Roman J, Cooper E, Sample A, Waters B, Smith J, Kuster N (2013) Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits. IEEE Trans Electromag Compatib 55(2):265–274. doi:10.​1109/​TEMC.​2012.​2219870
12.
13.
15.
go back to reference Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647–3652CrossRef Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647–3652CrossRef
16.
go back to reference Hoogers G (2002) Fuel cell technology handbook. Handbook series for mechanical engineering. Taylor & Francis Hoogers G (2002) Fuel cell technology handbook. Handbook series for mechanical engineering. Taylor & Francis
17.
go back to reference Hsu J, Zahedi S, Kansal A, Srivastava M, Raghunathan V (2006) Adaptive duty cycling for energy harvesting systems. In: Proceedings of the international symposium on low power electronics and design, pp 180–185. doi:10.1109/LPE.2006.4271832 Hsu J, Zahedi S, Kansal A, Srivastava M, Raghunathan V (2006) Adaptive duty cycling for energy harvesting systems. In: Proceedings of the international symposium on low power electronics and design, pp 180–185. doi:10.​1109/​LPE.​2006.​4271832
18.
go back to reference Hu Y, Zhang Y, Xu C, Zhu G, Wang ZL (2010) High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett 10(12):5025–5031CrossRef Hu Y, Zhang Y, Xu C, Zhu G, Wang ZL (2010) High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett 10(12):5025–5031CrossRef
19.
go back to reference Ivanov I, Vidakovi-Koch T, Sundmacher K (2010) Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3(4):803–846 Ivanov I, Vidakovi-Koch T, Sundmacher K (2010) Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3(4):803–846
20.
go back to reference Jornet J, Akyildiz I (2010) Channel capacity of electromagnetic nanonetworks in the terahertz band. In: IEEE international conference on communications (ICC), pp 1 –6. doi:10.1109/ICC.2010.5501885 Jornet J, Akyildiz I (2010) Channel capacity of electromagnetic nanonetworks in the terahertz band. In: IEEE international conference on communications (ICC), pp 1 –6. doi:10.​1109/​ICC.​2010.​5501885
22.
go back to reference Jornet J, Akyildiz I (2011) Low-weight channel coding for interference mitigation in electromagnetic nanonetworks in the terahertz band. In: IEEE international conference on communication (ICC), pp 1–6. doi:10.1109/icc.2011.5962987 Jornet J, Akyildiz I (2011) Low-weight channel coding for interference mitigation in electromagnetic nanonetworks in the terahertz band. In: IEEE international conference on communication (ICC), pp 1–6. doi:10.​1109/​icc.​2011.​5962987
24.
go back to reference Jornet JM, Akyildiz IF (2010) Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. In: Proceedings of the European conference on antennas and propagation Jornet JM, Akyildiz IF (2010) Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. In: Proceedings of the European conference on antennas and propagation
25.
go back to reference Jornet JM, Akyildiz IF (2011) Information capacity of pulse-based wireless nanosensor networks. In: Proceedings of IEEE SECON, pp 80–88 Jornet JM, Akyildiz IF (2011) Information capacity of pulse-based wireless nanosensor networks. In: Proceedings of IEEE SECON, pp 80–88
27.
29.
go back to reference Khouzani M, Sarkar S, Kar K (2011) Optimal routing and scheduling in multihop wireless renewable energy networks. In: Proceedings of sixth information theory and applications workshop (ITA) Khouzani M, Sarkar S, Kar K (2011) Optimal routing and scheduling in multihop wireless renewable energy networks. In: Proceedings of sixth information theory and applications workshop (ITA)
32.
go back to reference Li Z, Wang ZL (2011) Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv Mater 23(1):84–89MathSciNetCrossRef Li Z, Wang ZL (2011) Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv Mater 23(1):84–89MathSciNetCrossRef
33.
go back to reference Lin YM et al (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662CrossRef Lin YM et al (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662CrossRef
35.
go back to reference Luo Y, Zhang J, Letaief KB (2012) Training optimization for energy harvesting communication systems. In: Proceedings of IEEE Globecom Luo Y, Zhang J, Letaief KB (2012) Training optimization for energy harvesting communication systems. In: Proceedings of IEEE Globecom
36.
go back to reference Luryi S, Xu J, Zaslavsky A (2007) Future trends in microelectronics: up the nano creek. Wiley, IEEE Luryi S, Xu J, Zaslavsky A (2007) Future trends in microelectronics: up the nano creek. Wiley, IEEE
37.
go back to reference MacVittie K, Halamek J, Halamkova L, Southcott M, Jemison WD, Lobel R, Katz E (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6:81–86. doi:10.1039/C2EE23209J CrossRef MacVittie K, Halamek J, Halamkova L, Southcott M, Jemison WD, Lobel R, Katz E (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6:81–86. doi:10.​1039/​C2EE23209J CrossRef
38.
go back to reference Mercier PP, Lysaght AC, Bandyopadhyay S, Stankovic APCKM (2012) Energy extraction from the biologic battery in the inner ear. Nat Biotechnol 30:1240–1243 Mercier PP, Lysaght AC, Bandyopadhyay S, Stankovic APCKM (2012) Energy extraction from the biologic battery in the inner ear. Nat Biotechnol 30:1240–1243
39.
go back to reference Mitcheson P (2010) Energy harvesting for human wearable and implantable bio-sensors. In: IEEE engineering in medicine and biology society, pp 3432–3436 (2010) Mitcheson P (2010) Energy harvesting for human wearable and implantable bio-sensors. In: IEEE engineering in medicine and biology society, pp 3432–3436 (2010)
40.
go back to reference Mohrehkesh S, Weigle MC (2013) Optimizing communication energy consumption in perpetual wireless nanosensor networks. In: Proceedings of the IEEE Globecom, Atlanta, GA, pp 545–550 Mohrehkesh S, Weigle MC (2013) Optimizing communication energy consumption in perpetual wireless nanosensor networks. In: Proceedings of the IEEE Globecom, Atlanta, GA, pp 545–550
41.
go back to reference Mohrehkesh S, Weigle MC (2014) Optimizing energy consumption in terahertz band nanonetworks. To appear in IEEE JSAC: molecular, biological, and multi-scale communications series Mohrehkesh S, Weigle MC (2014) Optimizing energy consumption in terahertz band nanonetworks. To appear in IEEE JSAC: molecular, biological, and multi-scale communications series
42.
go back to reference Mohrehkesh S, Weigle MC (2014) RIH-MAC: receiver-initiated harvesting-aware MAC for nanonetworks. In: Proceedings of the first ACM annual international conference on nanoscale computing and communication (NANOCOM), pp 6:1–6:9 Mohrehkesh S, Weigle MC (2014) RIH-MAC: receiver-initiated harvesting-aware MAC for nanonetworks. In: Proceedings of the first ACM annual international conference on nanoscale computing and communication (NANOCOM), pp 6:1–6:9
43.
go back to reference Noh DK, Abdelzaher TF (2012) Efficient flow-control algorithm cooperating with energy allocation scheme for solar-powered WSNs. Wirel Commun Mobile Comput 12(5):379–392. doi:10.1002/wcm.965 CrossRef Noh DK, Abdelzaher TF (2012) Efficient flow-control algorithm cooperating with energy allocation scheme for solar-powered WSNs. Wirel Commun Mobile Comput 12(5):379–392. doi:10.​1002/​wcm.​965 CrossRef
44.
go back to reference Pan C, Li Z, Guo W, Zhu J, Wang ZL (2011) Fiber-based hybrid nanogenerators for/as self-powered systems in biological liquid. Angewandte Chemie 123(47):11388–11392CrossRef Pan C, Li Z, Guo W, Zhu J, Wang ZL (2011) Fiber-based hybrid nanogenerators for/as self-powered systems in biological liquid. Angewandte Chemie 123(47):11388–11392CrossRef
45.
go back to reference Parks A, Sample A, Zhao Y, Smith J (2013) A wireless sensing platform utilizing ambient RF energy. In: IEEE topical conference on wireless sensors and sensor networks (WiSNet), pp 127–129. doi:10.1109/WiSNet.2013.6488656 Parks A, Sample A, Zhao Y, Smith J (2013) A wireless sensing platform utilizing ambient RF energy. In: IEEE topical conference on wireless sensors and sensor networks (WiSNet), pp 127–129. doi:10.​1109/​WiSNet.​2013.​6488656
47.
go back to reference Rentmeesters M, Tsai W, Lin KJ (1996) A theory of lexicographic multi-criteria optimization. In: Proceedings of second IEEE international conference on engineering of complex computer systems, pp 76–79. doi:10.1109/ICECCS.1996.558386 Rentmeesters M, Tsai W, Lin KJ (1996) A theory of lexicographic multi-criteria optimization. In: Proceedings of second IEEE international conference on engineering of complex computer systems, pp 76–79. doi:10.​1109/​ICECCS.​1996.​558386
49.
go back to reference Roundy S, Leland E, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey J, Wright P, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput 4(1):28–36CrossRef Roundy S, Leland E, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey J, Wright P, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput 4(1):28–36CrossRef
50.
go back to reference Roundy S, Wright P, Rabaey J (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers Roundy S, Wright P, Rabaey J (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers
52.
go back to reference Sensale-Rodriguez B, Yan R, Kelly MM, Fang T, Tahy K, Hwang WS, Jena D, Liu L, Xing HG (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun Sensale-Rodriguez B, Yan R, Kelly MM, Fang T, Tahy K, Hwang WS, Jena D, Liu L, Xing HG (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun
58.
go back to reference Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angewandte Chemie International Edition 51(47):11700–11721CrossRef Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angewandte Chemie International Edition 51(47):11700–11721CrossRef
59.
go back to reference Wu K, Jiang Y, Marinakis D (2012) A stochastic calculus for network systems with renewable energy sources. In: Proceedings of IEEE conference on computer communications workshops (INFOCOM Workshops), pp 109–114. doi:10.1109/INFCOMW.2012.6193470 Wu K, Jiang Y, Marinakis D (2012) A stochastic calculus for network systems with renewable energy sources. In: Proceedings of IEEE conference on computer communications workshops (INFOCOM Workshops), pp 109–114. doi:10.​1109/​INFCOMW.​2012.​6193470
60.
go back to reference Xu S, Hansen BJ, Wang ZL (2010) Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat Commun 1 Xu S, Hansen BJ, Wang ZL (2010) Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat Commun 1
61.
go back to reference Zungeru AM, Ang LM, Prabaharan S, Seng KP (2012) Chapter 13. Radio frequency energy harvesting and management for wireless sensor networks. CRC Press Zungeru AM, Ang LM, Prabaharan S, Seng KP (2012) Chapter 13. Radio frequency energy harvesting and management for wireless sensor networks. CRC Press
Metadata
Title
Energy Harvesting in Nanonetworks
Authors
Shahram Mohrehkesh
Michele C. Weigle
Sajal K. Das
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50688-3_14