Skip to main content
Top
Published in: Journal of Electroceramics 3/2023

11-09-2023

Energy harvesting properties of the d31 type piezoelectric cantilever harvester

Authors: Dongyu Xu, Yan Hu, Xianlong Bu, Huaicheng Chen, Hongyu Jia

Published in: Journal of Electroceramics | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As a possible alternative to provide a continuous power supply for small and low-power devices, piezoelectric energy harvesting technology has attracted wide attention in the last decade. This paper developed a kind of flexible d31 type piezoelectric macro fiber composite (MFC) and the MFC cantilever harvester. The vibration energy harvesting properties of the harvester were discussed. The research results show that the MFC cantilever harvester has a good voltage response to the excitation signal, and the largest open circuit voltage amplitude appears at the resonance frequency. The open circuit voltage amplitude of the harvester is sensitive to the vibration acceleration, which increases nearly linearly with increasing the vibration acceleration when the vibration acceleration is less than 2.0 g. The increase of the piezoelectric ceramic fiber volume fraction in the MFC can improve the open circuit voltage of the harvester, but increases the stiffness of the harvester, which is disadvantageous to the long-term operational reliability of the harvester. The desired open circuit voltage or short circuit current can be achieved in practical application by connecting multiple MFCs in series or parallel.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F.F. Ahmad, C. Ghenai, M. Bettayeb, Maximum power point tracking and photovoltaic energy harvesting for internet of things: a comprehensive review. Sustain. Energy Techn. 47, 101430 (2021) F.F. Ahmad, C. Ghenai, M. Bettayeb, Maximum power point tracking and photovoltaic energy harvesting for internet of things: a comprehensive review. Sustain. Energy Techn. 47, 101430 (2021)
2.
go back to reference Q. Zhang, A. Agbossou, Z.H. Feng, M. Cosnier, Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part II: experimental analysis. Sens. Actuat A-Phys. 163, 284–290 (2010)CrossRef Q. Zhang, A. Agbossou, Z.H. Feng, M. Cosnier, Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part II: experimental analysis. Sens. Actuat A-Phys. 163, 284–290 (2010)CrossRef
3.
go back to reference F.U. Khan, M.U. Qadir, State-of-the-art in vibration-based electrostatic energy harvesting. J Micromech Microeng 26, 103001 (2016)CrossRef F.U. Khan, M.U. Qadir, State-of-the-art in vibration-based electrostatic energy harvesting. J Micromech Microeng 26, 103001 (2016)CrossRef
4.
go back to reference A. Toprak, O. Tigli, Piezoelectric energy harvesting: state-of-the-art and challenges. Appl Phys Rev 1, 031104 (2014)CrossRef A. Toprak, O. Tigli, Piezoelectric energy harvesting: state-of-the-art and challenges. Appl Phys Rev 1, 031104 (2014)CrossRef
5.
go back to reference A. Harb, Energy harvesting: state-of-the-art. Renew Energ. 36(10), 2641–2654 (2011)CrossRef A. Harb, Energy harvesting: state-of-the-art. Renew Energ. 36(10), 2641–2654 (2011)CrossRef
6.
go back to reference L.J. Lu, W.Q. Ding, J.Q. Liu, B. Yang, Flexible PVDF based piezoelectric nanogenerators. Nano Energy 78, 105251 (2020)CrossRef L.J. Lu, W.Q. Ding, J.Q. Liu, B. Yang, Flexible PVDF based piezoelectric nanogenerators. Nano Energy 78, 105251 (2020)CrossRef
7.
go back to reference A. Khan, Z. Abas, H.S. Kim, I.K. Oh, Piezoelectric thin films: an integrated review of transducers and energy harvesting. Smart Mater. Struct. 2 5, 053002 (2016)CrossRef A. Khan, Z. Abas, H.S. Kim, I.K. Oh, Piezoelectric thin films: an integrated review of transducers and energy harvesting. Smart Mater. Struct. 2 5, 053002 (2016)CrossRef
8.
go back to reference J.X. Chen, J.W. Li, C.C. Cheng, C.W. Chiu, Piezoelectric property enhancement of PZT/Poly (vinylidenefluoride-co-trifluoroethylene) hybrid films for flexible piezoelectric energy harvesters. ACS Omega 7, 793–803 (2021)CrossRef J.X. Chen, J.W. Li, C.C. Cheng, C.W. Chiu, Piezoelectric property enhancement of PZT/Poly (vinylidenefluoride-co-trifluoroethylene) hybrid films for flexible piezoelectric energy harvesters. ACS Omega 7, 793–803 (2021)CrossRef
9.
go back to reference M.T. Todaro, F. Guido, V. Mastronardi, D. Desmaele, G. Epifani, L. Algieri, M.D. Vittorio, Piezoelectric MEMS vibrational energy harvesters: advances and outlook. Microelectron Eng. 183–184, 23–36 (2017)CrossRef M.T. Todaro, F. Guido, V. Mastronardi, D. Desmaele, G. Epifani, L. Algieri, M.D. Vittorio, Piezoelectric MEMS vibrational energy harvesters: advances and outlook. Microelectron Eng. 183–184, 23–36 (2017)CrossRef
10.
go back to reference S. Nabavi, L.H. Zhang, Nonlinear multi-mode wideband piezoelectric MEMS vibration energy harvester. IEEE Sens J 19, 4837–4848 (2019)CrossRef S. Nabavi, L.H. Zhang, Nonlinear multi-mode wideband piezoelectric MEMS vibration energy harvester. IEEE Sens J 19, 4837–4848 (2019)CrossRef
11.
go back to reference Y.W. Tian, G.M. Li, Z.R. Yi, J.Q. Liu, B. Yang, A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film. J Phys Chem Solids 117, 21–27 (2018)CrossRef Y.W. Tian, G.M. Li, Z.R. Yi, J.Q. Liu, B. Yang, A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film. J Phys Chem Solids 117, 21–27 (2018)CrossRef
12.
go back to reference M. Edla, Y.Y. Lim, D. Mikio, R.V. Padilla, A single-stage rectifier-less boost converter circuit for piezoelectric energy harvesting systems. IEEE T. Energy Conver. 37, 505–514 (2021)CrossRef M. Edla, Y.Y. Lim, D. Mikio, R.V. Padilla, A single-stage rectifier-less boost converter circuit for piezoelectric energy harvesting systems. IEEE T. Energy Conver. 37, 505–514 (2021)CrossRef
13.
go back to reference C. Covaci, A. Gontean, Piezoelectric energy harvesting solutions: a review. Sensors 20, 3512 (2020)CrossRef C. Covaci, A. Gontean, Piezoelectric energy harvesting solutions: a review. Sensors 20, 3512 (2020)CrossRef
14.
go back to reference G.K. Ottman, H.F. Hofmann, G.A. Lesieutre, Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE T. Power Electr 18, 696–703 (2003)CrossRef G.K. Ottman, H.F. Hofmann, G.A. Lesieutre, Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE T. Power Electr 18, 696–703 (2003)CrossRef
15.
go back to reference J.J. Zhao, Z. You, A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 14, 12497–12510 (2014)CrossRef J.J. Zhao, Z. You, A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 14, 12497–12510 (2014)CrossRef
16.
go back to reference W.S. Jung, M.J. Lee, M.G. Kang, H.G. Moon, S.J. Yoon, S.H. Baek, C.Y. Kang, Powerful curved piezoelectric generator for wearable applications. Nano Energy 13, 174–181 (2015)CrossRef W.S. Jung, M.J. Lee, M.G. Kang, H.G. Moon, S.J. Yoon, S.H. Baek, C.Y. Kang, Powerful curved piezoelectric generator for wearable applications. Nano Energy 13, 174–181 (2015)CrossRef
17.
go back to reference M. Pozzi, M.L. Zhu, Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications. Smart Mater Struct 21, 055004 (2012)CrossRef M. Pozzi, M.L. Zhu, Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications. Smart Mater Struct 21, 055004 (2012)CrossRef
18.
go back to reference S. Panda, S. Hajra, K. Mistewicz, P. In-na, M. Sahu, P.M. Rajaitha, H.J. Kim, Piezoelectric energy harvesting systems for biomedical applications. Nano Energy 100, 107514 (2022)CrossRef S. Panda, S. Hajra, K. Mistewicz, P. In-na, M. Sahu, P.M. Rajaitha, H.J. Kim, Piezoelectric energy harvesting systems for biomedical applications. Nano Energy 100, 107514 (2022)CrossRef
19.
go back to reference A. Ballo, M. Bottaro, A.D. Grasso, A review of power management integrated circuits for ultrasound-based energy harvesting in implantable medical devices. Appl Sci 11, 2487 (2021)CrossRef A. Ballo, M. Bottaro, A.D. Grasso, A review of power management integrated circuits for ultrasound-based energy harvesting in implantable medical devices. Appl Sci 11, 2487 (2021)CrossRef
20.
go back to reference Q. Zheng, B.J. Shi, Z. Li, Z.L. Wang, Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv Sci 4, 1700029 (2017)CrossRef Q. Zheng, B.J. Shi, Z. Li, Z.L. Wang, Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv Sci 4, 1700029 (2017)CrossRef
21.
go back to reference N. Wu, B. Bao, Q. Wang, Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output. Eng Struct 235, 112068 (2021)CrossRef N. Wu, B. Bao, Q. Wang, Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output. Eng Struct 235, 112068 (2021)CrossRef
22.
go back to reference H.C. Xiong, L.B. Wang, Piezoelectric energy harvester for public roadway: On-site installation and evaluation. Appl Energy 174, 101–107 (2016)CrossRef H.C. Xiong, L.B. Wang, Piezoelectric energy harvester for public roadway: On-site installation and evaluation. Appl Energy 174, 101–107 (2016)CrossRef
23.
go back to reference M.R. Sarker, S. Julai, M.F.M. Sabri, S.M. Said, M.M. Islam, M. Tahir, Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. Sens. Actuat A-Phys 300, 111634 (2019)CrossRef M.R. Sarker, S. Julai, M.F.M. Sabri, S.M. Said, M.M. Islam, M. Tahir, Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. Sens. Actuat A-Phys 300, 111634 (2019)CrossRef
24.
go back to reference M. Iqbal, M.M. Nauman, F.U. Khan, P.E. Abas, Q. Cheok, A. Iqbal, B. Aissa, Vibration-based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: a contributed review. Int. J. Energ. Res. 45, 65–102 (2021)CrossRef M. Iqbal, M.M. Nauman, F.U. Khan, P.E. Abas, Q. Cheok, A. Iqbal, B. Aissa, Vibration-based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: a contributed review. Int. J. Energ. Res. 45, 65–102 (2021)CrossRef
25.
go back to reference H.W. Kim, S. Priya, K. Uchino, R.E. Newnham, Piezoelectric Energy harvesting under high pre-stressed cyclic vibrations. J Electroceram 15, 27–34 (2005)CrossRef H.W. Kim, S. Priya, K. Uchino, R.E. Newnham, Piezoelectric Energy harvesting under high pre-stressed cyclic vibrations. J Electroceram 15, 27–34 (2005)CrossRef
26.
go back to reference D. Shen, J.H. Park, J. Ajitsaria, S.Y. Choe, H.C.W. Iii, D.J. Kim, The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18, 055017 (2008)CrossRef D. Shen, J.H. Park, J. Ajitsaria, S.Y. Choe, H.C.W. Iii, D.J. Kim, The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18, 055017 (2008)CrossRef
27.
go back to reference T.B. Xu, E.J. Siochi, J.H. Kang, L. Zuo, W.L. Zhou, X.D. Tang, X.N. Jiang, Energy harvesting using a PZT ceramic multilayer stack. Smart Mater. Struct. 22, 065015 (2013)CrossRef T.B. Xu, E.J. Siochi, J.H. Kang, L. Zuo, W.L. Zhou, X.D. Tang, X.N. Jiang, Energy harvesting using a PZT ceramic multilayer stack. Smart Mater. Struct. 22, 065015 (2013)CrossRef
28.
go back to reference Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit, M.C. McAlpine, Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett 11, 1331–1336 (2011)CrossRef Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit, M.C. McAlpine, Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett 11, 1331–1336 (2011)CrossRef
29.
go back to reference Z. Yang, J. Zu, Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting. Energ. Convers. Manage. 122, 321–329 (2016)CrossRef Z. Yang, J. Zu, Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting. Energ. Convers. Manage. 122, 321–329 (2016)CrossRef
30.
go back to reference S. Sukumaran, S. Chatbouri, D. Rouxel, E. Tisserand, F. Thiebaud, T.B. Zineb, Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. J. Intel Mat. Syst. Str. 32, 746–780 (2021)CrossRef S. Sukumaran, S. Chatbouri, D. Rouxel, E. Tisserand, F. Thiebaud, T.B. Zineb, Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. J. Intel Mat. Syst. Str. 32, 746–780 (2021)CrossRef
31.
go back to reference M.D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials. J Electroceram 13, 385–392 (2004)CrossRef M.D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials. J Electroceram 13, 385–392 (2004)CrossRef
32.
go back to reference W.J. Ding, W.W. Xu, Z.J. Dong, Y.Q. Liu, Q. Wang, T. Shiotani, Piezoelectric properties and microstructure of ceramicrete-based piezoelectric composites. Ceram Int 47(21), 29681–29687 (2021)CrossRef W.J. Ding, W.W. Xu, Z.J. Dong, Y.Q. Liu, Q. Wang, T. Shiotani, Piezoelectric properties and microstructure of ceramicrete-based piezoelectric composites. Ceram Int 47(21), 29681–29687 (2021)CrossRef
33.
go back to reference A. Almusallam, Z. Luo, A. Komolafe, K. Yang, A. Robinson, R. Torah, S. Beeby, Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles. Nano Energy 33, 146–156 (2017)CrossRef A. Almusallam, Z. Luo, A. Komolafe, K. Yang, A. Robinson, R. Torah, S. Beeby, Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles. Nano Energy 33, 146–156 (2017)CrossRef
34.
go back to reference S.K. Ghosh, D. Mandal, High-performance bio-piezoelectric nanogenerator made with fish scale. Appl Phys Lett 109, 103701 (2016)CrossRef S.K. Ghosh, D. Mandal, High-performance bio-piezoelectric nanogenerator made with fish scale. Appl Phys Lett 109, 103701 (2016)CrossRef
35.
go back to reference J. Qu, H.L. Ji, J.H. Qiu, Prediction and optimization of poling condition for PZT based-macro fiber composites with interdigitated electrodes. J Alloy Compd 896, 163020 (2022)CrossRef J. Qu, H.L. Ji, J.H. Qiu, Prediction and optimization of poling condition for PZT based-macro fiber composites with interdigitated electrodes. J Alloy Compd 896, 163020 (2022)CrossRef
36.
go back to reference J. Qu, H.L. Ji, J.H. Qiu, The synergism of peak to peak value, frequency and superimposed DC bias voltage on electric-field-induced strain of PZT based-macro fiber composites. Ceram Int 45, 22067–22077 (2019)CrossRef J. Qu, H.L. Ji, J.H. Qiu, The synergism of peak to peak value, frequency and superimposed DC bias voltage on electric-field-induced strain of PZT based-macro fiber composites. Ceram Int 45, 22067–22077 (2019)CrossRef
37.
go back to reference M. Khazaee, A. Rezaniakolaie, L. Rosendahl, A broadband macro-fiber-composite piezoelectric energy harvester for higher energy conversion from practical wideband vibrations. Nano Energy 76, 104978 (2020)CrossRef M. Khazaee, A. Rezaniakolaie, L. Rosendahl, A broadband macro-fiber-composite piezoelectric energy harvester for higher energy conversion from practical wideband vibrations. Nano Energy 76, 104978 (2020)CrossRef
38.
go back to reference J.J. Zhou, J. Zhou, W. Chen, J. Tian, J. Shen, P.C. Zhang, Macro fiber composite-based active and efficient suppression of low-frequency vibration of thin-walled composite beam. Compos Struct 299, 116019 (2022)CrossRef J.J. Zhou, J. Zhou, W. Chen, J. Tian, J. Shen, P.C. Zhang, Macro fiber composite-based active and efficient suppression of low-frequency vibration of thin-walled composite beam. Compos Struct 299, 116019 (2022)CrossRef
39.
go back to reference J.J. Liu, H. Zuo, W. Xia, Y.J. Luo, D. Yao, Y.J. Chen, K. Wang, Q. Li, Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode. Microelectron Eng 231, 111333 (2020)CrossRef J.J. Liu, H. Zuo, W. Xia, Y.J. Luo, D. Yao, Y.J. Chen, K. Wang, Q. Li, Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode. Microelectron Eng 231, 111333 (2020)CrossRef
40.
go back to reference Y.W. Yang, L.H. Tang, H.Y. Li, Vibration energy harvesting using macro-fiber composites. Smart Mater Struct 18, 115025 (2009)CrossRef Y.W. Yang, L.H. Tang, H.Y. Li, Vibration energy harvesting using macro-fiber composites. Smart Mater Struct 18, 115025 (2009)CrossRef
41.
go back to reference S.Q. Zhang, Y.X. Li, R. Schmidt, Modeling and simulation of macro-fiber composite layered smart structures. Compos. Struct. 126, 89–100 (2015)CrossRef S.Q. Zhang, Y.X. Li, R. Schmidt, Modeling and simulation of macro-fiber composite layered smart structures. Compos. Struct. 126, 89–100 (2015)CrossRef
42.
go back to reference D. Grzybek, P. Micek, Piezoelectric beam generator based on MFC as a self-powered vibration sensor. Sens. Actuat A-Phys 267, 417–423 (2017)CrossRef D. Grzybek, P. Micek, Piezoelectric beam generator based on MFC as a self-powered vibration sensor. Sens. Actuat A-Phys 267, 417–423 (2017)CrossRef
43.
go back to reference M.A. Trindade, A. Benjeddou, Finite element characterisation of multilayer d31 piezoelectric macro-fibre composites. Compos Struct 151, 47–57 (2016)CrossRef M.A. Trindade, A. Benjeddou, Finite element characterisation of multilayer d31 piezoelectric macro-fibre composites. Compos Struct 151, 47–57 (2016)CrossRef
44.
go back to reference M.A. Trindade, A. Benjeddou, Finite element characterization and parametric analysis of the nonlinear behaviour of an actual d15 shear MFC. Acta Mech 224, 2489–2503 (2013)CrossRef M.A. Trindade, A. Benjeddou, Finite element characterization and parametric analysis of the nonlinear behaviour of an actual d15 shear MFC. Acta Mech 224, 2489–2503 (2013)CrossRef
45.
go back to reference X. Yuan, Z.Q. Chen, M.L. Wu, H. Luo, C. Chen, K.C. Zhou, D. Zhang, A novel thickness polarized d15 shear piezoelectric fiber composites. Sens. Actuat A-Phys 260, 185–190 (2017)CrossRef X. Yuan, Z.Q. Chen, M.L. Wu, H. Luo, C. Chen, K.C. Zhou, D. Zhang, A novel thickness polarized d15 shear piezoelectric fiber composites. Sens. Actuat A-Phys 260, 185–190 (2017)CrossRef
46.
go back to reference D.Y. Xu, Y. Hu, H.C. Chen, H.Y. Jia, X. Cheng, Fabrication and property of flexible macro fiber composites for vibration-based energy harvesting. Ceram. Int. 49, 14291–14301 (2023)CrossRef D.Y. Xu, Y. Hu, H.C. Chen, H.Y. Jia, X. Cheng, Fabrication and property of flexible macro fiber composites for vibration-based energy harvesting. Ceram. Int. 49, 14291–14301 (2023)CrossRef
Metadata
Title
Energy harvesting properties of the d31 type piezoelectric cantilever harvester
Authors
Dongyu Xu
Yan Hu
Xianlong Bu
Huaicheng Chen
Hongyu Jia
Publication date
11-09-2023
Publisher
Springer US
Published in
Journal of Electroceramics / Issue 3/2023
Print ISSN: 1385-3449
Electronic ISSN: 1573-8663
DOI
https://doi.org/10.1007/s10832-023-00330-0

Other articles of this Issue 3/2023

Journal of Electroceramics 3/2023 Go to the issue