Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 7/2013

01-07-2013 | Original Article

Energy harvesting through arterial wall deformation: design considerations for a magneto-hydrodynamic generator

Authors: Alois Pfenniger, Dominik Obrist, Andreas Stahel, Volker M. Koch, Rolf Vogel

Published in: Medical & Biological Engineering & Computing | Issue 7/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As the complexity of active medical implants increases, the task of embedding a life-long power supply at the time of implantation becomes more challenging. A periodic renewal of the energy source is often required. Human energy harvesting is, therefore, seen as a possible remedy. In this paper, we present a novel idea to harvest energy from the pressure-driven deformation of an artery by the principle of magneto-hydrodynamics. The generator relies on a highly electrically conductive fluid accelerated perpendicularly to a magnetic field by means of an efficient lever arm mechanism. An artery with 10 mm inner diameter is chosen as a potential implantation site and its ability to drive the generator is established. Three analytical models are proposed to investigate the relevant design parameters and to determine the existence of an optimal configuration. The predicted output power reaches 65 μW according to the first two models and 135 μW according to the third model. It is found that the generator, designed as a circular structure encompassing the artery, should not exceed a total volume of 3 cm3.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Armentano R, Megnien JL, Simon A, Bellenfant F, Barra J, Levenson J (1995) Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans. Hypertension 26:48–54PubMedCrossRef Armentano R, Megnien JL, Simon A, Bellenfant F, Barra J, Levenson J (1995) Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans. Hypertension 26:48–54PubMedCrossRef
2.
go back to reference Avolio AP (1980) Multi-branched model of the human arterial system. Med Biol Eng Comput 18:709–718PubMedCrossRef Avolio AP (1980) Multi-branched model of the human arterial system. Med Biol Eng Comput 18:709–718PubMedCrossRef
3.
go back to reference Bergel DH (1960) The static elastic properties of the arterial wall. J Physiol 156:445–457 Bergel DH (1960) The static elastic properties of the arterial wall. J Physiol 156:445–457
4.
go back to reference Bergel DH (1960) The dynamic elastic properties of the arterial wall. J Physiol 156:458–469 Bergel DH (1960) The dynamic elastic properties of the arterial wall. J Physiol 156:458–469
5.
go back to reference Branover H (1978) Magnetohydrodynamic Flow in Ducts. Israel Universities Press, Jerusalem Branover H (1978) Magnetohydrodynamic Flow in Ducts. Israel Universities Press, Jerusalem
6.
go back to reference Fargie D, Martin BW (1971) Developing laminar flow in a pipe of circular cross-section. Proc R Soc Lond A 321:461–476CrossRef Fargie D, Martin BW (1971) Developing laminar flow in a pipe of circular cross-section. Proc R Soc Lond A 321:461–476CrossRef
7.
8.
go back to reference Goto H, Sugiura T, Harada Y, Kazui T (1999) Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med Biol Eng Comput 37:377–380PubMedCrossRef Goto H, Sugiura T, Harada Y, Kazui T (1999) Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med Biol Eng Comput 37:377–380PubMedCrossRef
9.
go back to reference Hodis A, Zamir M (2009) Arterial wall tethering as a distant boundary condition. Phys Rev E 80:051913CrossRef Hodis A, Zamir M (2009) Arterial wall tethering as a distant boundary condition. Phys Rev E 80:051913CrossRef
10.
go back to reference Horejs D, Gilbert PM, Burstein S, Vogelzang RL (1988) Normal aortoiliac diameters by CT. J Comput Assisted Tomogr 12:602–603CrossRef Horejs D, Gilbert PM, Burstein S, Vogelzang RL (1988) Normal aortoiliac diameters by CT. J Comput Assisted Tomogr 12:602–603CrossRef
11.
go back to reference Jia D, Liu J, Zhou Y (2009) Harvesting human kinematical energy based on liquid metal magnetohydrodynamics. Phys Lett A 373:1305–1309CrossRef Jia D, Liu J, Zhou Y (2009) Harvesting human kinematical energy based on liquid metal magnetohydrodynamics. Phys Lett A 373:1305–1309CrossRef
12.
go back to reference Kuecherer HF, Just A, Kirchheim H (2000) Evaluation of aortic compliance in humans. Am J Physiol Heart Circ Physiol 278:H11411–H11413 Kuecherer HF, Just A, Kirchheim H (2000) Evaluation of aortic compliance in humans. Am J Physiol Heart Circ Physiol 278:H11411–H11413
13.
go back to reference Lees C, Vincent JF, Hillerton JE (1991) Poisson’s ratio in skin. Biomed Mater Eng 1:19–23PubMed Lees C, Vincent JF, Hillerton JE (1991) Poisson’s ratio in skin. Biomed Mater Eng 1:19–23PubMed
14.
go back to reference Levy MN, Pappano AJ (2007) Cardiovascular physiology, 9th edn. Mosby Elsevier, Philadelphia Levy MN, Pappano AJ (2007) Cardiovascular physiology, 9th edn. Mosby Elsevier, Philadelphia
15.
go back to reference Matsch LW (1964) Capacitors, magnetic circuits, and transformers. Prentice-Hall, Englewood Cliffs Matsch LW (1964) Capacitors, magnetic circuits, and transformers. Prentice-Hall, Englewood Cliffs
16.
go back to reference McVeigh GE, Bratteli CW, Morgan DJ, Alinder CM, Glasser SP, Finkelstein SM, Cohn JN (1999) Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance. Hypertension 33:1392–1398PubMedCrossRef McVeigh GE, Bratteli CW, Morgan DJ, Alinder CM, Glasser SP, Finkelstein SM, Cohn JN (1999) Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance. Hypertension 33:1392–1398PubMedCrossRef
17.
go back to reference Messerle HK (1995) Magneto-hydro-dynamic electrical power generation. Wiley, Chichester Messerle HK (1995) Magneto-hydro-dynamic electrical power generation. Wiley, Chichester
18.
go back to reference Mohiaddin RH, Underwood SR, Bogren HG, Firmin DN, Klipstein RH, Rees RS, Longmore DB (1989) Regional aortic compliance studied by magnetic resonance imaging: the effects of age, training, and coronary artery disease. Br Heart J 62:90–96PubMedCrossRef Mohiaddin RH, Underwood SR, Bogren HG, Firmin DN, Klipstein RH, Rees RS, Longmore DB (1989) Regional aortic compliance studied by magnetic resonance imaging: the effects of age, training, and coronary artery disease. Br Heart J 62:90–96PubMedCrossRef
19.
go back to reference Murgo JP, Westerhof N, Giolma JP, Altobelli SA (1980) Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62:105–116PubMedCrossRef Murgo JP, Westerhof N, Giolma JP, Altobelli SA (1980) Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62:105–116PubMedCrossRef
20.
go back to reference Nicoud F (2002) Hemodynamic changes induced by stenting in elastic arteries. Center for turbulence research, Annual Research Briefs, pp 335–347 Nicoud F (2002) Hemodynamic changes induced by stenting in elastic arteries. Center for turbulence research, Annual Research Briefs, pp 335–347
21.
go back to reference Obrist D (2008) Fluidmechanics of semicircular canals—revisited. Z Angew Math Phys 59:475–497CrossRef Obrist D (2008) Fluidmechanics of semicircular canals—revisited. Z Angew Math Phys 59:475–497CrossRef
22.
go back to reference Pfenniger A, Koch VM, Vogel R (2011) Human energy harvesting by intravascular turbine generators. In: Proceedings of the 6th international conference on microtechnologies in medicine and biology (MMB 2011), Lucerne, pp 82–83 Pfenniger A, Koch VM, Vogel R (2011) Human energy harvesting by intravascular turbine generators. In: Proceedings of the 6th international conference on microtechnologies in medicine and biology (MMB 2011), Lucerne, pp 82–83
24.
go back to reference Potkay JA, Brooks K (2008) An arterial cuff energy scavenger for implanted microsystems. In: The 2nd international conference on bioinformatics and biomedical engineering (ICBBE 2008), pp 1580–1583 Potkay JA, Brooks K (2008) An arterial cuff energy scavenger for implanted microsystems. In: The 2nd international conference on bioinformatics and biomedical engineering (ICBBE 2008), pp 1580–1583
25.
go back to reference Ramsay MJ, Clark WW (2001) Piezoelectric energy harvesting for bio MEMS applications. Proc SPIE 4332:429–438CrossRef Ramsay MJ, Clark WW (2001) Piezoelectric energy harvesting for bio MEMS applications. Proc SPIE 4332:429–438CrossRef
26.
go back to reference Rezakhaniha R, Fonck E, Genoud C, Stergiopulos N (2011) Role of elastin anisotropy in structural strain energy functions of arterial tissue. Biomech Model Mechanobiol 10:599–611PubMedCrossRef Rezakhaniha R, Fonck E, Genoud C, Stergiopulos N (2011) Role of elastin anisotropy in structural strain energy functions of arterial tissue. Biomech Model Mechanobiol 10:599–611PubMedCrossRef
27.
go back to reference Roberts P, Stanley G, Morgan JM (2008) Abstract 2165: harvesting the energy of cardiac motion to power a pacemaker. Circulation 118:679–680CrossRef Roberts P, Stanley G, Morgan JM (2008) Abstract 2165: harvesting the energy of cardiac motion to power a pacemaker. Circulation 118:679–680CrossRef
28.
go back to reference Shau YW, Wang CL, Shieh JY, Hsu TC (1999) Noninvasive assessment of the viscoelasticity of peripheral arteries. Ultrasound Med Biol 25:1377–1388PubMedCrossRef Shau YW, Wang CL, Shieh JY, Hsu TC (1999) Noninvasive assessment of the viscoelasticity of peripheral arteries. Ultrasound Med Biol 25:1377–1388PubMedCrossRef
29.
go back to reference Shercliff JA (1962) The theory of electromagnetic flow-measurement. Cambridge University Press, Cambridge Shercliff JA (1962) The theory of electromagnetic flow-measurement. Cambridge University Press, Cambridge
30.
go back to reference Snarski SR, Kasper RG, Bruon AB (2004) Device for electro-magnetohydrodynamic (EMHD) energy harvesting. Proc SPIE 5417:147–161CrossRef Snarski SR, Kasper RG, Bruon AB (2004) Device for electro-magnetohydrodynamic (EMHD) energy harvesting. Proc SPIE 5417:147–161CrossRef
31.
go back to reference Sohn JW, Choi SB, Lee DY (2005) An investigation on piezoelectric energy harvesting for MEMS power sources. Proc IMechE Part C J Mech Eng Sci 219(4):429–436CrossRef Sohn JW, Choi SB, Lee DY (2005) An investigation on piezoelectric energy harvesting for MEMS power sources. Proc IMechE Part C J Mech Eng Sci 219(4):429–436CrossRef
32.
go back to reference Sutera SP, Skalak R (1993) The history of Poiseuille’s law. Annu Rev Fluid Mech 25:1–19CrossRef Sutera SP, Skalak R (1993) The history of Poiseuille’s law. Annu Rev Fluid Mech 25:1–19CrossRef
33.
go back to reference Tandon N, Cannizzaro C, Chao PH, Maidhof R, Marsano A, Au HT, Radisic M, Vunjak-Novakovic G (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4:155–173PubMedCrossRef Tandon N, Cannizzaro C, Chao PH, Maidhof R, Marsano A, Au HT, Radisic M, Vunjak-Novakovic G (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4:155–173PubMedCrossRef
34.
go back to reference Tashiro R, Kabei N, Katayama K, Tsuboi F, Tsuchiya K (2002) Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J Artif Org 5:239–245CrossRef Tashiro R, Kabei N, Katayama K, Tsuboi F, Tsuchiya K (2002) Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J Artif Org 5:239–245CrossRef
35.
go back to reference Tortoreillo A, Pedrizzetti G (2004) Flow-tissue interaction with compliance mismatch in a model stented artery. J Biomech 37:1–11CrossRef Tortoreillo A, Pedrizzetti G (2004) Flow-tissue interaction with compliance mismatch in a model stented artery. J Biomech 37:1–11CrossRef
36.
go back to reference Van Buskirk WC, Watts RG, Liu YK (1976) The fluid mechanics of the semicircular canals. J Fluid Mech 78:87–98CrossRef Van Buskirk WC, Watts RG, Liu YK (1976) The fluid mechanics of the semicircular canals. J Fluid Mech 78:87–98CrossRef
37.
go back to reference Vasava P, Jalali P, Dabagh M (2009). Pulsatile blood flow simulations in aortic arch: effects of blood pressure and the geometry of arch on wall shear stress. In: Proceedings of the 4th European conference of the international federation for medical and biological engineering (IFMBE 2009), vol. 22, pp 1926–1929 Vasava P, Jalali P, Dabagh M (2009). Pulsatile blood flow simulations in aortic arch: effects of blood pressure and the geometry of arch on wall shear stress. In: Proceedings of the 4th European conference of the international federation for medical and biological engineering (IFMBE 2009), vol. 22, pp 1926–1929
38.
go back to reference Visser KR (1992) Electric conductivity of stationary and flowing human blood at low frequencies. Med Biol Eng Comput 30:636–640PubMedCrossRef Visser KR (1992) Electric conductivity of stationary and flowing human blood at low frequencies. Med Biol Eng Comput 30:636–640PubMedCrossRef
39.
go back to reference Warriner RK, Johnston KW, Cobbold RS (2008) A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment. Physiol Meas 29:157–159PubMedCrossRef Warriner RK, Johnston KW, Cobbold RS (2008) A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment. Physiol Meas 29:157–159PubMedCrossRef
40.
go back to reference Westerhofy N, Noordergraaf A (1970) Arterial viscoelasticity: a generalized model. J Biomech 3:357–379CrossRef Westerhofy N, Noordergraaf A (1970) Arterial viscoelasticity: a generalized model. J Biomech 3:357–379CrossRef
41.
go back to reference Westerhof N, Stergiopulos N, Noble MI (2005) Snapshots of hemodynamics: an aid for clinical research and graduate education. Springer Science + Business Media, Boston Westerhof N, Stergiopulos N, Noble MI (2005) Snapshots of hemodynamics: an aid for clinical research and graduate education. Springer Science + Business Media, Boston
42.
go back to reference Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563PubMed Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563PubMed
43.
go back to reference Wong LS, Hossain S, Ta A, Edvinsson J, Rivas DH, Nääs H (2004) A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J Solid-St Circ 39:2446–2456CrossRef Wong LS, Hossain S, Ta A, Edvinsson J, Rivas DH, Nääs H (2004) A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J Solid-St Circ 39:2446–2456CrossRef
44.
go back to reference Zurbuchen A, Pfenniger A, Stahel A, Stoeck CT, Vandenberghe S, Koch VM, Vogel R (2013) Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann Biomed Eng 44(1):131–141 Zurbuchen A, Pfenniger A, Stahel A, Stoeck CT, Vandenberghe S, Koch VM, Vogel R (2013) Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann Biomed Eng 44(1):131–141
Metadata
Title
Energy harvesting through arterial wall deformation: design considerations for a magneto-hydrodynamic generator
Authors
Alois Pfenniger
Dominik Obrist
Andreas Stahel
Volker M. Koch
Rolf Vogel
Publication date
01-07-2013
Publisher
Springer-Verlag
Published in
Medical & Biological Engineering & Computing / Issue 7/2013
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-012-0989-2

Other articles of this Issue 7/2013

Medical & Biological Engineering & Computing 7/2013 Go to the issue

Premium Partner