Skip to main content
Top

2023 | OriginalPaper | Chapter

Energy Storage Devices

Authors : Samuel Raafat Fahim, Hany M. Hasanien

Published in: Modernization of Electric Power Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In electrical grids, there is always a mismatch between generation and electrical load demand. It is a big challenge to mitigate this mismatch. There are many efforts that try to suppress the mismatch, among which supply/demand sides scheduling. In addition, this is done by using deterministic and probabilistic techniques and methodologies to decrease the estimation error in both sides. However, every electrical grid suffers from some sort of mismatch. The supply/demand mismatch can be positive type: supply exceeds the demand; or negative type: supply is deficit to cover the demand [1].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
5.
go back to reference Levine JG (2011) Pumped hydroelectric energy storage. In: Barnes FS, Levine JG (eds) Large energy storage systems handbook. CRC Press, Boca Raton, pp 51–76 Levine JG (2011) Pumped hydroelectric energy storage. In: Barnes FS, Levine JG (eds) Large energy storage systems handbook. CRC Press, Boca Raton, pp 51–76
7.
go back to reference Succar S (2011) Compressed air energy storage. In: Barnes FS, Levine JG (eds) Large energy storage systems handbook. CRC Press, Boca Raton, pp 111–152 Succar S (2011) Compressed air energy storage. In: Barnes FS, Levine JG (eds) Large energy storage systems handbook. CRC Press, Boca Raton, pp 111–152
9.
go back to reference Mehta B (1992) CAES geology. EPRI J 17:38–41 Mehta B (1992) CAES geology. EPRI J 17:38–41
10.
go back to reference Knoke S, Schainker R, van der Linden S (2003) Compressed air energy storage. In: Gotschall H, Mears D (eds) EPRI-DOE handbook of energy storage for transmission & distribution applications. EPRI, Palo Alto, pp 15.1–15.42 Knoke S, Schainker R, van der Linden S (2003) Compressed air energy storage. In: Gotschall H, Mears D (eds) EPRI-DOE handbook of energy storage for transmission & distribution applications. EPRI, Palo Alto, pp 15.1–15.42
11.
go back to reference Arsie I, Marano V, Nappi G, Rizzo G (2005) A model of a hybrid power plant with wind turbines and compressed air energy storage. In: The American Society of Mechanical Engineers, New York, PWR2005–50187, pp 987–1000 Arsie I, Marano V, Nappi G, Rizzo G (2005) A model of a hybrid power plant with wind turbines and compressed air energy storage. In: The American Society of Mechanical Engineers, New York, PWR2005–50187, pp 987–1000
12.
go back to reference Komarnicki P, Lombardi P, Styczynski Z (2017) Electric energy storage systems: flexible options for smart grids. Springer, Berlin, pp 136–140CrossRef Komarnicki P, Lombardi P, Styczynski Z (2017) Electric energy storage systems: flexible options for smart grids. Springer, Berlin, pp 136–140CrossRef
13.
go back to reference Miyagawa Y, Kameno K, Takahata R, Ueyama H (1999) A 0.5 kWh flywheel energy storage system using a high-T/sub c/superconducting magnetic bearing. IEEE Trans Appl Supercond 9:996–999CrossRef Miyagawa Y, Kameno K, Takahata R, Ueyama H (1999) A 0.5 kWh flywheel energy storage system using a high-T/sub c/superconducting magnetic bearing. IEEE Trans Appl Supercond 9:996–999CrossRef
14.
go back to reference Kamath H, Key T, Bakis C, Richey S, Plater B, Townley D (2003) Flywheel energy storage. In: Gotschall H, Mears D (eds) EPRI-DOE handbook of energy storage for transmission & distribution applications. EPRI, Palo Alto, pp 13.1–13.42 Kamath H, Key T, Bakis C, Richey S, Plater B, Townley D (2003) Flywheel energy storage. In: Gotschall H, Mears D (eds) EPRI-DOE handbook of energy storage for transmission & distribution applications. EPRI, Palo Alto, pp 13.1–13.42
17.
go back to reference Wu F, Yang B, Ye J (2020) Grid-scale energy storage systems and applications, 1st edn. Academic, London, pp 17–56 Wu F, Yang B, Ye J (2020) Grid-scale energy storage systems and applications, 1st edn. Academic, London, pp 17–56
19.
go back to reference Scott I, Lee S (2011) Battery energy storage. In: Barnes FS, Levine JG (eds) Large energy storage systems handbook. CRC Press, Boca Raton, pp 153–179 Scott I, Lee S (2011) Battery energy storage. In: Barnes FS, Levine JG (eds) Large energy storage systems handbook. CRC Press, Boca Raton, pp 153–179
20.
go back to reference Enos DG (2015) Lead-acid batteries for medium and large-scale energy storage. In: Menictas C, Kazacos MS, Lim TM (eds) Advances in batteries for medium and large scale energy storage. Elsevier/Woodhead Publishing, Cambridge, pp 57–71CrossRef Enos DG (2015) Lead-acid batteries for medium and large-scale energy storage. In: Menictas C, Kazacos MS, Lim TM (eds) Advances in batteries for medium and large scale energy storage. Elsevier/Woodhead Publishing, Cambridge, pp 57–71CrossRef
21.
go back to reference Salkind A, Zguris G (2011) Lead-acid batteries. In: Reddy TB, Linden D (eds) Linden’s handbook of batteries, 4th edn. McGraw Hill, New York, pp 16.1–16.87 Salkind A, Zguris G (2011) Lead-acid batteries. In: Reddy TB, Linden D (eds) Linden’s handbook of batteries, 4th edn. McGraw Hill, New York, pp 16.1–16.87
22.
go back to reference Dahn J, Ehrlich GMG (2011) Lithium-ion batteries. In: Reddy TB, Linden D (eds) Linden’s handbook of batteries, 4th edn. McGraw Hill, New York, pp 26.1–26.79 Dahn J, Ehrlich GMG (2011) Lithium-ion batteries. In: Reddy TB, Linden D (eds) Linden’s handbook of batteries, 4th edn. McGraw Hill, New York, pp 26.1–26.79
23.
go back to reference The International Electrotechnical Commission (IEC) (2011) Electrical energy storage. White paper, Geneva The International Electrotechnical Commission (IEC) (2011) Electrical energy storage. White paper, Geneva
24.
go back to reference Burke AF (2011) Electrochemical capacitors. In: Reddy TB, Linden D (eds) Linden’s handbook of batteries, 4th edn. McGraw Hill, New York, pp 39.1–39.44 Burke AF (2011) Electrochemical capacitors. In: Reddy TB, Linden D (eds) Linden’s handbook of batteries, 4th edn. McGraw Hill, New York, pp 39.1–39.44
26.
go back to reference Petricca L, Ohlckers P, Chen X (2013) The future of energy storage systems. In: Zobaa AF (ed) Energy storage technologies and applications. In Tech, Rijeka, pp 113–130 Petricca L, Ohlckers P, Chen X (2013) The future of energy storage systems. In: Zobaa AF (ed) Energy storage technologies and applications. In Tech, Rijeka, pp 113–130
29.
30.
go back to reference Begeal C, Decker T (2011) Solar thermal energy storage. In: Barnes FS, Levine JG (eds) Large energy storage systems handbook. CRC Press, Boca Raton, pp 181–212 Begeal C, Decker T (2011) Solar thermal energy storage. In: Barnes FS, Levine JG (eds) Large energy storage systems handbook. CRC Press, Boca Raton, pp 181–212
34.
35.
go back to reference Hassenzahl W, Schoenung S, Abel T (2003) Superconducting magnetic energy storage. In: Gotschall H, Mears D (eds) EPRI-DOE handbook of energy storage for transmission & distribution applications. EPRI, Palo Alto, pp 12.1–12.31 Hassenzahl W, Schoenung S, Abel T (2003) Superconducting magnetic energy storage. In: Gotschall H, Mears D (eds) EPRI-DOE handbook of energy storage for transmission & distribution applications. EPRI, Palo Alto, pp 12.1–12.31
38.
go back to reference International Renewable Energy Agency (IRENA) (2017) Electricity storage and renewables: costs and markets to 2030. IRENA, Abu Dhabi International Renewable Energy Agency (IRENA) (2017) Electricity storage and renewables: costs and markets to 2030. IRENA, Abu Dhabi
42.
go back to reference Rezaei N, Ahmadi A, Afifi SN, Zobaa AF, Abdel Aleem SHE (2018) Overview of energy storage technologies. In: Zobaa AF, Ribeiro PF, Abdel Aleem SHE, Afifi SN (eds) Energy storage at different voltage levels. Technology, integration, and market aspects, 1st edn. The Institute of Engineering and Technology (IET), Stevenage Herts, pp 1–30 Rezaei N, Ahmadi A, Afifi SN, Zobaa AF, Abdel Aleem SHE (2018) Overview of energy storage technologies. In: Zobaa AF, Ribeiro PF, Abdel Aleem SHE, Afifi SN (eds) Energy storage at different voltage levels. Technology, integration, and market aspects, 1st edn. The Institute of Engineering and Technology (IET), Stevenage Herts, pp 1–30
45.
go back to reference Acar C, Beskese A, Temur GT (2019) A novel multicriteria sustainability investigation of energy storage systems. Int J Energy Res. Wiley Online Library 43:6419CrossRef Acar C, Beskese A, Temur GT (2019) A novel multicriteria sustainability investigation of energy storage systems. Int J Energy Res. Wiley Online Library 43:6419CrossRef
46.
go back to reference Tran D, Khmbadkone AM (2013) Management of lifetime extension of energy storage system in micro-grid applications. IEEE Trans Smart Grid 4(3):1289–1296CrossRef Tran D, Khmbadkone AM (2013) Management of lifetime extension of energy storage system in micro-grid applications. IEEE Trans Smart Grid 4(3):1289–1296CrossRef
47.
go back to reference Bryne RH, Ngugen TA, Copp D, Chalamala BR, Gyuk I (2017) Energy management and optimization methods for grid energy storage systems. IEEE Access 6:13231–13260CrossRef Bryne RH, Ngugen TA, Copp D, Chalamala BR, Gyuk I (2017) Energy management and optimization methods for grid energy storage systems. IEEE Access 6:13231–13260CrossRef
50.
go back to reference Schoenung SM, Hassenzahl WV (2003) Long-vs. short-term energy storage technologies analysis a life-cycle cost study a study for the DOE energy storage systems program. Sandia National Laboratories (SNL), Albuquerque/Livermore. https://doi.org/10.2172/918358CrossRef Schoenung SM, Hassenzahl WV (2003) Long-vs. short-term energy storage technologies analysis a life-cycle cost study a study for the DOE energy storage systems program. Sandia National Laboratories (SNL), Albuquerque/Livermore. https://​doi.​org/​10.​2172/​918358CrossRef
51.
go back to reference Ramsden T (2013) An evaluation of the total cost of ownership of fuel cell powered material handling equipment. National Renewable Energy Laboratory (NREL), Oak RidgeCrossRef Ramsden T (2013) An evaluation of the total cost of ownership of fuel cell powered material handling equipment. National Renewable Energy Laboratory (NREL), Oak RidgeCrossRef
53.
go back to reference Carnegie R, Gotham D, Nderitu D, Preckel P (2013) Utility scale energy storage – benefits, applications, and technologies. State Utility Forecasting Group. West Lafayette, IN, USA. Carnegie R, Gotham D, Nderitu D, Preckel P (2013) Utility scale energy storage – benefits, applications, and technologies. State Utility Forecasting Group. West Lafayette, IN, USA.
Metadata
Title
Energy Storage Devices
Authors
Samuel Raafat Fahim
Hany M. Hasanien
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-18996-8_13