Skip to main content
Top
Published in: Journal of Materials Science 8/2020

08-11-2019 | Metals & corrosion

Enhanced nanotwinning by special grain growth in nanocrystalline materials

Authors: Fusheng Tan, Qihong Fang, Jia Li, Hui Feng

Published in: Journal of Materials Science | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Experiments have revealed that stress-driven grain growth can strongly affect the movement and distribution of the dislocations in nanocrystalline materials. Meanwhile, nanotwinning often originates from the generation and glide of partial dislocations, which is also influenced by grain growth. However, the underlying effect of the grain growth on the nucleation of nanoscale twins remains unclear. In this work, a theoretical model is established to investigate the effect of cooperative grain growth by nanograin rotation and grain boundary migration on the nucleation of nanoscale twins in deformed nanocrystalline solids. The results indicate that, in most cases, the cooperative mechanism controls the nucleation of nanoscale twins. In particular, the cooperative mechanism significantly enhances the nanotwin nucleation outside the deformed grain, while inhibits that inside the deformed grain. The capacity of nanotwin nucleation can be significantly enhanced via decreasing the level of rotation or increasing the migration distance, and it can be maximized by tailoring the coupling factor of the migration process. Moreover, the nanotwin nucleation and its length can be simultaneously optimized via tailoring the cooperative grain growth. As a result, the cooperative grain growth can serve as an effective approach to enhance nanotwinning and thereby improve the plasticity of nanocrystalline materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference El-Atwani O, Esquivel E, Aydogan E et al (2019) Unprecedented irradiation resistance of nanocrystalline tungsten with equiaxed nanocrystalline grains to dislocation loop accumulation. Acta Mater 165:118–128 El-Atwani O, Esquivel E, Aydogan E et al (2019) Unprecedented irradiation resistance of nanocrystalline tungsten with equiaxed nanocrystalline grains to dislocation loop accumulation. Acta Mater 165:118–128
4.
go back to reference Zhou X, Li XY, Lu K (2018) Enhanced thermal stability of nanograined metals below a critical grain size. Science 360:526–530 Zhou X, Li XY, Lu K (2018) Enhanced thermal stability of nanograined metals below a critical grain size. Science 360:526–530
5.
go back to reference Hu J, Shi YN, Sauvage X, Sha G, Lu K (2017) Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355:1292–1296 Hu J, Shi YN, Sauvage X, Sha G, Lu K (2017) Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355:1292–1296
6.
go back to reference El-Atwani O, Hinks JA, Greaves G, Allain JP, Maloy SA (2017) Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten. Mater Res Lett 5:343–349 El-Atwani O, Hinks JA, Greaves G, Allain JP, Maloy SA (2017) Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten. Mater Res Lett 5:343–349
7.
go back to reference Mohr M, Daccache L, Horvat S, Brühne K, Jacob T, Fecht H Jr (2017) Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films. Acta Mater 122:92–98 Mohr M, Daccache L, Horvat S, Brühne K, Jacob T, Fecht H Jr (2017) Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films. Acta Mater 122:92–98
8.
go back to reference Muche DNF, Drazin JW, Mardinly J, Dey S, Castro RHR (2017) Colossal grain boundary strengthening in ultrafine nanocrystalline oxides. Mater Lett 186:298–300 Muche DNF, Drazin JW, Mardinly J, Dey S, Castro RHR (2017) Colossal grain boundary strengthening in ultrafine nanocrystalline oxides. Mater Lett 186:298–300
9.
go back to reference Zhang Y, Tucker GJ, Trelewicz JR (2017) Stress-assisted grain growth in nanocrystalline metals: grain boundary mediated mechanisms and stabilization through alloying. Acta Mater 131:39–47 Zhang Y, Tucker GJ, Trelewicz JR (2017) Stress-assisted grain growth in nanocrystalline metals: grain boundary mediated mechanisms and stabilization through alloying. Acta Mater 131:39–47
10.
go back to reference Lu L (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426 Lu L (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426
11.
go back to reference Ha S, Se-Jong K, Seunghee H et al (2010) Improvement of ductility in magnesium alloy sheet using laser scanning treatment. Mater Lett 64:425–427 Ha S, Se-Jong K, Seunghee H et al (2010) Improvement of ductility in magnesium alloy sheet using laser scanning treatment. Mater Lett 64:425–427
12.
go back to reference Yang L, Tao NR, Lu K, Lu L (2013) Enhanced fatigue resistance of Cu with a gradient nanograined surface layer. Scr Mater 68:801–804 Yang L, Tao NR, Lu K, Lu L (2013) Enhanced fatigue resistance of Cu with a gradient nanograined surface layer. Scr Mater 68:801–804
13.
go back to reference Li N, Shi S, Luo J, Lu J, Wang N (2016) Effects of surface nanocrystallization on the corrosion behaviors of 316L and alloy 690. Surf Coat Technol 309:227–231 Li N, Shi S, Luo J, Lu J, Wang N (2016) Effects of surface nanocrystallization on the corrosion behaviors of 316L and alloy 690. Surf Coat Technol 309:227–231
14.
go back to reference Sihai L, Yinghong L, Liucheng Z et al (2016) Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing. Mater Des 104:320–326 Sihai L, Yinghong L, Liucheng Z et al (2016) Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing. Mater Des 104:320–326
15.
go back to reference Li N, Shi S, Luo J, Lu J, Wang N (2017) Effects of surface nanocrystallization on the corrosion behaviors of 316L and alloy 690. Surf Coat Technol 309:227–231 Li N, Shi S, Luo J, Lu J, Wang N (2017) Effects of surface nanocrystallization on the corrosion behaviors of 316L and alloy 690. Surf Coat Technol 309:227–231
16.
go back to reference Li X, Lu K (2017) Playing with defects in metals. Nat Mater 16:700–701 Li X, Lu K (2017) Playing with defects in metals. Nat Mater 16:700–701
17.
go back to reference Luo XM, Zhang B, Zhu XF, Zhou YT, Xiao TY, Zhang GP (2016) Local-structure-affected behavior during self-driven grain boundary migration. MRS Commun 6:85–91 Luo XM, Zhang B, Zhu XF, Zhou YT, Xiao TY, Zhang GP (2016) Local-structure-affected behavior during self-driven grain boundary migration. MRS Commun 6:85–91
18.
go back to reference Azizi A, Zou X, Ercius P et al (2014) Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat Commun 5:4867–4873 Azizi A, Zou X, Ercius P et al (2014) Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat Commun 5:4867–4873
19.
go back to reference Thomas SL, Chen K, Han J, Purohit PK, Srolovitz DJ (2017) Reconciling grain growth and shear-coupled grain boundary migration. Nat Commun 8:1764–1775 Thomas SL, Chen K, Han J, Purohit PK, Srolovitz DJ (2017) Reconciling grain growth and shear-coupled grain boundary migration. Nat Commun 8:1764–1775
20.
go back to reference Li J, Soh AK, Wu X (2014) On nanograin rotation by dislocation climb in nanocrystalline materials. Scr Mater 78–79:5–8 Li J, Soh AK, Wu X (2014) On nanograin rotation by dislocation climb in nanocrystalline materials. Scr Mater 78–79:5–8
21.
go back to reference Liu C, Lu W, Chen S, Li J (2019) Toughening of nanocrystalline materials by nanograin rotation. Mater Today Commun 19:297–299 Liu C, Lu W, Chen S, Li J (2019) Toughening of nanocrystalline materials by nanograin rotation. Mater Today Commun 19:297–299
22.
go back to reference Trautt ZT, Mishin Y, Actamat J (2003) Grain boundary migration and grain rotation studied by molecular dynamics. Acta Mater 51:2407–2424 Trautt ZT, Mishin Y, Actamat J (2003) Grain boundary migration and grain rotation studied by molecular dynamics. Acta Mater 51:2407–2424
23.
go back to reference Gorkaya T, Molodov KD, Molodov DA, Gottstein G (2011) Concurrent grain boundary motion and grain rotation under an applied stress. Acta Mater 59:5674–5680 Gorkaya T, Molodov KD, Molodov DA, Gottstein G (2011) Concurrent grain boundary motion and grain rotation under an applied stress. Acta Mater 59:5674–5680
24.
go back to reference Liu C, Lu W, Weng GJ, Li J (2019) A cooperative nano-grain rotation and grain-boundary migration mechanism for enhanced dislocation emission and tensile ductility in nanocrystalline materials. Mater Sci Eng, A 756:284–290 Liu C, Lu W, Weng GJ, Li J (2019) A cooperative nano-grain rotation and grain-boundary migration mechanism for enhanced dislocation emission and tensile ductility in nanocrystalline materials. Mater Sci Eng, A 756:284–290
25.
go back to reference Yan FK, Tao NR, Archie F, Gutierrez-Urrutia I, Raabe D, Lu K (2014) Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains. Acta Mater 81:487–500 Yan FK, Tao NR, Archie F, Gutierrez-Urrutia I, Raabe D, Lu K (2014) Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains. Acta Mater 81:487–500
26.
go back to reference Zhu SQ, Yan HG, Liao XZ et al (2015) Mechanisms for enhanced plasticity in magnesium alloys. Acta Mater 82:344–355 Zhu SQ, Yan HG, Liao XZ et al (2015) Mechanisms for enhanced plasticity in magnesium alloys. Acta Mater 82:344–355
27.
go back to reference Li Q, Xue S, Wang J et al (2018) High-strength nanotwinned Al alloys with 9R phase. Adv Mater 30:1704629 Li Q, Xue S, Wang J et al (2018) High-strength nanotwinned Al alloys with 9R phase. Adv Mater 30:1704629
28.
go back to reference You Z, Li X, Gui L, Lu Q, Zhu T (2013) Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater 61:217–227 You Z, Li X, Gui L, Lu Q, Zhu T (2013) Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater 61:217–227
31.
go back to reference Luo X, Li X, Zhang G (2017) Forming incoherent twin boundaries: a new way for nanograin growth under cyclic loading. Mater Res Lett 5:95–101 Luo X, Li X, Zhang G (2017) Forming incoherent twin boundaries: a new way for nanograin growth under cyclic loading. Mater Res Lett 5:95–101
32.
go back to reference Luo X, Zhu X, Zhang G (2014) Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat Commun 5:3021–3028 Luo X, Zhu X, Zhang G (2014) Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat Commun 5:3021–3028
33.
go back to reference Wang YQ, Smirani R, Ross GG (2004) Nanotwinning in silicon nanocrystals produced by ion implantation. Nano Lett 4:2041–2045 Wang YQ, Smirani R, Ross GG (2004) Nanotwinning in silicon nanocrystals produced by ion implantation. Nano Lett 4:2041–2045
34.
go back to reference Wu XL, Zhu YT (2008) Inverse grain-size effect on twinning in nanocrystalline Ni. Phys Rev Lett 101:025503 Wu XL, Zhu YT (2008) Inverse grain-size effect on twinning in nanocrystalline Ni. Phys Rev Lett 101:025503
35.
go back to reference Zhu YT, Liao XZ, Wu XL (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57:1–62 Zhu YT, Liao XZ, Wu XL (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57:1–62
36.
go back to reference Ovid’ko IA, Skiba NV (2014) Generation of nanoscale deformation twins at locally distorted grain boundaries in nanomaterials. Int J Plast 62:50–71 Ovid’ko IA, Skiba NV (2014) Generation of nanoscale deformation twins at locally distorted grain boundaries in nanomaterials. Int J Plast 62:50–71
37.
go back to reference Zhu YT, Wu XL, Liao XZ, Narayan J, Mathaudhu SN, Kecskes LJ (2009) Twinning partial multiplication at grain boundary in nanocrystalline fcc metals. Appl Phys Lett 95:031909 Zhu YT, Wu XL, Liao XZ, Narayan J, Mathaudhu SN, Kecskes LJ (2009) Twinning partial multiplication at grain boundary in nanocrystalline fcc metals. Appl Phys Lett 95:031909
38.
go back to reference Zhu YT, Liao XZ, Wu XL (2008) Deformation twinning in bulk nanocrystalline metals: experimental observations. JOM 60:60–64 Zhu YT, Liao XZ, Wu XL (2008) Deformation twinning in bulk nanocrystalline metals: experimental observations. JOM 60:60–64
39.
go back to reference Zhu YT, Narayan J, Hirth JP, Mahajan S, Wu XL, Liao XZ (2009) Formation of single and multiple deformation twins in nanocrystalline fcc metals. Acta Mater 57:3763–3770 Zhu YT, Narayan J, Hirth JP, Mahajan S, Wu XL, Liao XZ (2009) Formation of single and multiple deformation twins in nanocrystalline fcc metals. Acta Mater 57:3763–3770
40.
go back to reference Sansoz F, Dupont V (2006) Grain growth behavior at absolute zero during nanocrystalline metal indentation. Appl Phys Lett 89:111901 Sansoz F, Dupont V (2006) Grain growth behavior at absolute zero during nanocrystalline metal indentation. Appl Phys Lett 89:111901
41.
go back to reference Cahn JW, Yuri M, Akira S (2006) Coupling grain boundary motion to shear deformation. Acta Mater 54:4953–4975 Cahn JW, Yuri M, Akira S (2006) Coupling grain boundary motion to shear deformation. Acta Mater 54:4953–4975
42.
go back to reference Romanov AE, Anna LK (2009) Application of disclination concept to solid structures. Prog Mater Sci 54:740–769 Romanov AE, Anna LK (2009) Application of disclination concept to solid structures. Prog Mater Sci 54:740–769
43.
go back to reference Gutkin MY, Ovid’ko IA, Skiba NV (2008) Crack-stimulated generation of deformation twins in nanocrystalline metals and ceramics. Philos Mag 88:1137–1151 Gutkin MY, Ovid’ko IA, Skiba NV (2008) Crack-stimulated generation of deformation twins in nanocrystalline metals and ceramics. Philos Mag 88:1137–1151
44.
go back to reference Hirth JP, Lothe J (1982) Theory of dislocations (2nd ed). Wiley, New York Hirth JP, Lothe J (1982) Theory of dislocations (2nd ed). Wiley, New York
45.
go back to reference Kibey S, Liu JB, Johnson DD, Sehitoglu H (2007) Predicting twinning stress in fcc metals: linking twin-energy pathways to twin nucleation. Acta Mater 55:6843–6851 Kibey S, Liu JB, Johnson DD, Sehitoglu H (2007) Predicting twinning stress in fcc metals: linking twin-energy pathways to twin nucleation. Acta Mater 55:6843–6851
46.
go back to reference Bozzolo N, Soua N, Logé RE (2012) Evolution of microstructure and twin density during thermomechanical processing in a γ-γ’ nickel-based superalloy. Acta Mater 60:5056–5066 Bozzolo N, Soua N, Logé RE (2012) Evolution of microstructure and twin density during thermomechanical processing in a γ-γ’ nickel-based superalloy. Acta Mater 60:5056–5066
47.
go back to reference Gutkin MY, Ovid’ko IA, Skiba NV (2006) Generation of deformation twins in nanocrystalline metals: theoretical model. Phys Rev B 74:172107 Gutkin MY, Ovid’ko IA, Skiba NV (2006) Generation of deformation twins in nanocrystalline metals: theoretical model. Phys Rev B 74:172107
48.
go back to reference Li Q, Cahoon JR, Richards NL (2009) Effects of thermo-mechanical processing parameters on the special boundary configurations of commercially pure nickel. Mater Sci Eng, A 527:263–271 Li Q, Cahoon JR, Richards NL (2009) Effects of thermo-mechanical processing parameters on the special boundary configurations of commercially pure nickel. Mater Sci Eng, A 527:263–271
Metadata
Title
Enhanced nanotwinning by special grain growth in nanocrystalline materials
Authors
Fusheng Tan
Qihong Fang
Jia Li
Hui Feng
Publication date
08-11-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 8/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04194-0

Other articles of this Issue 8/2020

Journal of Materials Science 8/2020 Go to the issue

Premium Partners