Skip to main content
Top
Published in: Journal of Materials Science 18/2016

06-06-2016 | Original Paper

Enhanced photocatalytic degradation of a phenolic compounds’ mixture using a highly efficient TiO2/reduced graphene oxide nanocomposite

Authors: H. Al-Kandari, A. M. Abdullah, A. M. Mohamed, S. Al-Kandari

Published in: Journal of Materials Science | Issue 18/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A nanocomposite (namely rGOTi) was prepared by loading 0.33 weight percent of reduced graphene oxide (rGO) on commercial TiO2 nanoparticles using a hydrothermal method. The as-prepared nanocomposite was characterized using surface and bulk analytical techniques such as X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier transform infrared and Raman spectroscopies. Also, the surface area was measured using the Brunauer–Emmett–Teller technique. In addition, the UV–Vis diffuse reflectance spectroscopy measurements have shown that the band gap energy for TiO2 was lowered from 3.11 to 2.96 eV when it was composited with rGO to form the rGOTi. The kinetics of the degradation of phenol, p-chlorophenol, and p-nitrophenol (separate or mixed) and their intermediates using the as-prepared nanocomposite photocatalyst compared to the bare TiO2 nanoparticles was tested using UV and Xenon lamps (mainly a visible light source) as photoexcitation sources in the presence and absence of H2O2. In general, it was revealed that the photocatalytic activity of the rGOTi using a visible light source, in the presence of H2O2, is significantly higher than that when (1) a UV lamp and/or (2) TiO2 nanoparticles were used. Also, the presence of H2O2 led to higher degradation rates of all the phenolic compounds regardless the type of photoexcitation source.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akbal F, Onar AN (2003) Photocatalytic degradation of phenol. Environ Monit Assess 83:295–302CrossRef Akbal F, Onar AN (2003) Photocatalytic degradation of phenol. Environ Monit Assess 83:295–302CrossRef
2.
go back to reference Yan J, Jianping W, Jing B, Daoquan W, Zongding H (2006) Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol. Biochem Eng J 29:227–234CrossRef Yan J, Jianping W, Jing B, Daoquan W, Zongding H (2006) Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol. Biochem Eng J 29:227–234CrossRef
3.
go back to reference Tao Y, Cheng ZL, Ting KE, Yin XJ (2013) Photocatalytic degradation of phenol using a nanocatalyst: the mechanism and kinetics. J Catal 2013:6 Tao Y, Cheng ZL, Ting KE, Yin XJ (2013) Photocatalytic degradation of phenol using a nanocatalyst: the mechanism and kinetics. J Catal 2013:6
4.
go back to reference Tian M, Wu G, Adams B, Wen J, Chen A (2008) Kinetics of photoelectrocatalytic degradation of nitrophenols on nanostructured TiO2 electrodes. J Phys Chem C 112:825–831CrossRef Tian M, Wu G, Adams B, Wen J, Chen A (2008) Kinetics of photoelectrocatalytic degradation of nitrophenols on nanostructured TiO2 electrodes. J Phys Chem C 112:825–831CrossRef
5.
go back to reference Tang WZ, Huren A (1995) Photocatalytic degradation kinetics and mechanism of acid blue 40 by TiO2/UV in aqueous solution. Chemosphere 31:4171–4183CrossRef Tang WZ, Huren A (1995) Photocatalytic degradation kinetics and mechanism of acid blue 40 by TiO2/UV in aqueous solution. Chemosphere 31:4171–4183CrossRef
6.
go back to reference Liu L, Liu H, Zhao Y-P, Wang Y, Duan Y, Gao G, Ge M, Chen W (2008) Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation. Environ Sci Technol 42:2342–2348CrossRef Liu L, Liu H, Zhao Y-P, Wang Y, Duan Y, Gao G, Ge M, Chen W (2008) Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation. Environ Sci Technol 42:2342–2348CrossRef
7.
go back to reference Nagaveni K, Sivalingam G, Hegde MS, Madras G (2004) Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environ Sci Technol 38:1600–1604CrossRef Nagaveni K, Sivalingam G, Hegde MS, Madras G (2004) Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environ Sci Technol 38:1600–1604CrossRef
8.
go back to reference Di Paola A, Cufalo G, Addamo M, Bellardita M, Campostrini R, Ischia M, Ceccato R, Palmisano L (2008) Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids Surf A 317:366–376CrossRef Di Paola A, Cufalo G, Addamo M, Bellardita M, Campostrini R, Ischia M, Ceccato R, Palmisano L (2008) Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids Surf A 317:366–376CrossRef
9.
go back to reference Wang W, Silva CG, Faria JL (2007) Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts. Appl Catal B 70:470–478CrossRef Wang W, Silva CG, Faria JL (2007) Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts. Appl Catal B 70:470–478CrossRef
10.
go back to reference Wei A, Wang J, Long Q, Liu X, Li X, Dong X, Huang W (2011) Synthesis of high-performance graphene nanosheets by thermal reduction of graphene oxide. Mater Res Bull 46:2131–2134CrossRef Wei A, Wang J, Long Q, Liu X, Li X, Dong X, Huang W (2011) Synthesis of high-performance graphene nanosheets by thermal reduction of graphene oxide. Mater Res Bull 46:2131–2134CrossRef
11.
go back to reference Wu Z-S, Ren W, Gao L, Liu B, Jiang C, Cheng H-M (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47:493–499CrossRef Wu Z-S, Ren W, Gao L, Liu B, Jiang C, Cheng H-M (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47:493–499CrossRef
12.
go back to reference Štengl V, Bakardjieva S, Grygar TM, Bludská J, Kormunda M (2013) TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem Cent J 7:1–12CrossRef Štengl V, Bakardjieva S, Grygar TM, Bludská J, Kormunda M (2013) TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem Cent J 7:1–12CrossRef
13.
go back to reference Liu S, Sun H, Liu S, Wang S (2013) Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. Chem Eng J 214:298–303CrossRef Liu S, Sun H, Liu S, Wang S (2013) Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. Chem Eng J 214:298–303CrossRef
14.
go back to reference Kim CH, Kim B-H, Yang KS (2012) TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50:2472–2481CrossRef Kim CH, Kim B-H, Yang KS (2012) TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50:2472–2481CrossRef
15.
go back to reference Zhao H, Su F, Fan X, Yu H, Wu D, Quan X (2012) Graphene-TiO2 composite photocatalyst with enhanced photocatalytic performance. Chinese J Catal 33:777–782CrossRef Zhao H, Su F, Fan X, Yu H, Wu D, Quan X (2012) Graphene-TiO2 composite photocatalyst with enhanced photocatalytic performance. Chinese J Catal 33:777–782CrossRef
16.
go back to reference Wang D, Li X, Chen J, Tao X (2012) Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chem Eng J 198–199:547–554CrossRef Wang D, Li X, Chen J, Tao X (2012) Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chem Eng J 198–199:547–554CrossRef
17.
go back to reference Al-Kandari H, Abdullah AM, Al-Kandari S, Mohamed AM (2015) Effect of the graphene oxide reduction method on the photocatalytic and electrocatalytic activities of reduced graphene oxide/TiO2 composite. RSC Adv 5:71988–71998CrossRef Al-Kandari H, Abdullah AM, Al-Kandari S, Mohamed AM (2015) Effect of the graphene oxide reduction method on the photocatalytic and electrocatalytic activities of reduced graphene oxide/TiO2 composite. RSC Adv 5:71988–71998CrossRef
18.
go back to reference Lunsford JH (2003) The direct formation of H2O2 from H2 and O2 over palladium catalysts. J Catal 216:455–460CrossRef Lunsford JH (2003) The direct formation of H2O2 from H2 and O2 over palladium catalysts. J Catal 216:455–460CrossRef
19.
go back to reference Badmus MAO, Audu TOK, Anyata BU (2007) Removal of heavy metal from industrial wastewater using hydrogen peroxide. Afr J Biotechnol 6:238–242 Badmus MAO, Audu TOK, Anyata BU (2007) Removal of heavy metal from industrial wastewater using hydrogen peroxide. Afr J Biotechnol 6:238–242
20.
go back to reference Aleksandrzak M, Adamski P, Kukułka W, Zielinska B, Mijowska E (2015) Effect of graphene thickness on photocatalytic activity of TiO2-graphene nanocomposites. Appl Surf Sci 331:193–199CrossRef Aleksandrzak M, Adamski P, Kukułka W, Zielinska B, Mijowska E (2015) Effect of graphene thickness on photocatalytic activity of TiO2-graphene nanocomposites. Appl Surf Sci 331:193–199CrossRef
21.
go back to reference Aleksandrzak M, Onyszko M, Zielinska B, Mijowska E (2014) Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO2 nanoparticles—synthesis, characterization and photocatalytic activity. Int J Mater Res 105:900–906CrossRef Aleksandrzak M, Onyszko M, Zielinska B, Mijowska E (2014) Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO2 nanoparticles—synthesis, characterization and photocatalytic activity. Int J Mater Res 105:900–906CrossRef
22.
go back to reference Zhang H, Guo L-H, Wang D, Zhao L, Wan B (2015) Light-induced efficient molecular oxygen activation on a Cu(II)-grafted TiO2/graphene photocatalyst for phenol degradation. ACS Appl Mater Interfaces 7:1816–1823CrossRef Zhang H, Guo L-H, Wang D, Zhao L, Wan B (2015) Light-induced efficient molecular oxygen activation on a Cu(II)-grafted TiO2/graphene photocatalyst for phenol degradation. ACS Appl Mater Interfaces 7:1816–1823CrossRef
23.
go back to reference Wang P, Han L, Zhu C, Zhai Y, Dong S (2011) Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano Res 4:1153–1162CrossRef Wang P, Han L, Zhu C, Zhai Y, Dong S (2011) Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano Res 4:1153–1162CrossRef
24.
go back to reference Li W, Pei X, Deng F, Luo X, Li F, Xiao Y (2015) Bio-inspired artificial functional photocatalyst: biomimetic enzyme-like TiO2/reduced graphene oxide nanocomposite with excellent molecular recognition ability. Nanotechnology 26:1–7 Li W, Pei X, Deng F, Luo X, Li F, Xiao Y (2015) Bio-inspired artificial functional photocatalyst: biomimetic enzyme-like TiO2/reduced graphene oxide nanocomposite with excellent molecular recognition ability. Nanotechnology 26:1–7
25.
go back to reference Luo L, Yang Y, Zhang A, Wang M, Liu Y, Bian L, Jiang F, Pan X (2015) Hydrothermal synthesis of fluorinated anatase TiO2/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A. Appl Surf Sci 353:469–479CrossRef Luo L, Yang Y, Zhang A, Wang M, Liu Y, Bian L, Jiang F, Pan X (2015) Hydrothermal synthesis of fluorinated anatase TiO2/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A. Appl Surf Sci 353:469–479CrossRef
26.
go back to reference Luo L-J, Zhang X-J, Ma F-J, Zhang AL, Bian L-C, Pan X-J, Jiang F-Z (2015) Photocatalytic degradation of bisphenol A by TiO2-reduced graphene oxide nanocomposites. React Kinet Mech Catal 114:311–322CrossRef Luo L-J, Zhang X-J, Ma F-J, Zhang AL, Bian L-C, Pan X-J, Jiang F-Z (2015) Photocatalytic degradation of bisphenol A by TiO2-reduced graphene oxide nanocomposites. React Kinet Mech Catal 114:311–322CrossRef
27.
go back to reference Shang X, Li C, Liu M, Du P, Zheng J (2015) Photocatalytic hydroxylation of phenol to dihydroxybenzenes by TiO2/RGO composites. J Chem Pharm Res 7:490–495 Shang X, Li C, Liu M, Du P, Zheng J (2015) Photocatalytic hydroxylation of phenol to dihydroxybenzenes by TiO2/RGO composites. J Chem Pharm Res 7:490–495
28.
go back to reference Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
29.
go back to reference Al-Kandari H, Abdullah AM, Mohammad AM, Al-Kandari S (2014) Graphene/TiO2 composite electrode: synthesis and application towards the oxygen reduction reaction. ECS Trans 61:13–26CrossRef Al-Kandari H, Abdullah AM, Mohammad AM, Al-Kandari S (2014) Graphene/TiO2 composite electrode: synthesis and application towards the oxygen reduction reaction. ECS Trans 61:13–26CrossRef
30.
go back to reference Hu N, Wang Y, Chai J, Gao R, Yang Z, Kong ES-W, Zhang Y (2012) Gas sensor based on p-phenylenediamine reduced graphene oxide. Sens Actuator B 163:107–114CrossRef Hu N, Wang Y, Chai J, Gao R, Yang Z, Kong ES-W, Zhang Y (2012) Gas sensor based on p-phenylenediamine reduced graphene oxide. Sens Actuator B 163:107–114CrossRef
31.
go back to reference Liu H, Dong X, Wang X, Sun C, Li J, Zhu Z (2013) A green and direct synthesis of graphene oxide encapsulated TiO2 core/shell structures with enhanced photoactivity. Chem Eng J 230:279–285CrossRef Liu H, Dong X, Wang X, Sun C, Li J, Zhu Z (2013) A green and direct synthesis of graphene oxide encapsulated TiO2 core/shell structures with enhanced photoactivity. Chem Eng J 230:279–285CrossRef
32.
go back to reference Ma H-L, Zhang Y, Hu Q-H, Yan D, Yu Z-Z, Zhai M (2012) Chemical reduction and removal of Cr(vi) from acidic aqueous solution by ethylenediamine-reduced graphene oxide. J Mater Chem 22:5914–5916CrossRef Ma H-L, Zhang Y, Hu Q-H, Yan D, Yu Z-Z, Zhai M (2012) Chemical reduction and removal of Cr(vi) from acidic aqueous solution by ethylenediamine-reduced graphene oxide. J Mater Chem 22:5914–5916CrossRef
33.
go back to reference Kassaee MZ, Motamedi E, Majdi M (2011) Magnetic Fe3O4-graphene oxide/polystyrene: fabrication and characterization of a promising nanocomposite. Chem Eng J 172:540–549CrossRef Kassaee MZ, Motamedi E, Majdi M (2011) Magnetic Fe3O4-graphene oxide/polystyrene: fabrication and characterization of a promising nanocomposite. Chem Eng J 172:540–549CrossRef
34.
go back to reference Kyotani T, Suzuki K-Y, Yamashita H, Tomita A (1993) Formation of carbon-metal composites from metal ion exchanged graphite oxide. Tanso 160:255–265CrossRef Kyotani T, Suzuki K-Y, Yamashita H, Tomita A (1993) Formation of carbon-metal composites from metal ion exchanged graphite oxide. Tanso 160:255–265CrossRef
35.
go back to reference Guo J, Zhu S, Chen Z, Li Y, Yu Z, Liu Q, Li J, Feng C, Zhang D (2011) Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst. Ultrason Sonochem 18:1082–1090CrossRef Guo J, Zhu S, Chen Z, Li Y, Yu Z, Liu Q, Li J, Feng C, Zhang D (2011) Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst. Ultrason Sonochem 18:1082–1090CrossRef
36.
go back to reference Loryuenyong V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A (2013) Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv Mater Sci Eng 2013:1–5CrossRef Loryuenyong V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A (2013) Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv Mater Sci Eng 2013:1–5CrossRef
37.
go back to reference Song J, Wang X, Chang C-T (2014) Preparation and characterization of graphene oxide. J Nanomater 2014:1–6 Song J, Wang X, Chang C-T (2014) Preparation and characterization of graphene oxide. J Nanomater 2014:1–6
38.
go back to reference Zhang Y-P, Xu J-J, Sun Z-H, Li C-Z, Pan C-X (2011) Preparation of graphene and TiO2 layer by layer composite with highly photocatalytic efficiency. Prog Natl Sci 21:467–471CrossRef Zhang Y-P, Xu J-J, Sun Z-H, Li C-Z, Pan C-X (2011) Preparation of graphene and TiO2 layer by layer composite with highly photocatalytic efficiency. Prog Natl Sci 21:467–471CrossRef
39.
go back to reference Oh J, Luong ND, Hwang T, Hong J, Nam J (2011) Fabrication of amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microsphere, 18th International Conference on Composite Materials, ICC, Jeju Oh J, Luong ND, Hwang T, Hong J, Nam J (2011) Fabrication of amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microsphere, 18th International Conference on Composite Materials, ICC, Jeju
40.
go back to reference El Achaby M, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide—PVDF nanocomposite films. Appl Surf Sci 258:7668–7677CrossRef El Achaby M, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide—PVDF nanocomposite films. Appl Surf Sci 258:7668–7677CrossRef
41.
go back to reference Yao Y, Miao S, Liu S, Ma LP, Sun H, Wang S (2012) Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem Eng J 184:326–332CrossRef Yao Y, Miao S, Liu S, Ma LP, Sun H, Wang S (2012) Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem Eng J 184:326–332CrossRef
42.
go back to reference Thema FT, Moloto MJ, Dikio ED, Nyangiwe NN, Kotsedi L, Maaza M, Khenfouch M (2013) Synthesis and characterization of graphene thin film by chemical reduction of exfoliated and intercalated graphite oxide. J Chem 2013:2–6CrossRef Thema FT, Moloto MJ, Dikio ED, Nyangiwe NN, Kotsedi L, Maaza M, Khenfouch M (2013) Synthesis and characterization of graphene thin film by chemical reduction of exfoliated and intercalated graphite oxide. J Chem 2013:2–6CrossRef
43.
go back to reference Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998CrossRef Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998CrossRef
44.
go back to reference Zhou K, Zhu Y, Yang X, Jiang X, Li C (2011) Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J Chem 35:353–359CrossRef Zhou K, Zhu Y, Yang X, Jiang X, Li C (2011) Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J Chem 35:353–359CrossRef
45.
go back to reference Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans R Soc Lond A 362:2271–2288CrossRef Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans R Soc Lond A 362:2271–2288CrossRef
46.
go back to reference Zhang H, Lv X, Li Y, Wang Y, Li J (2009) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386CrossRef Zhang H, Lv X, Li Y, Wang Y, Li J (2009) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386CrossRef
47.
go back to reference Qianqian Z, Tang B, Guoxin H (2011) High photoactive and visible-light responsive graphene/titanate nanotubes photocatalysts: preparation and characterization. J Hazard Mater 198:78–86CrossRef Qianqian Z, Tang B, Guoxin H (2011) High photoactive and visible-light responsive graphene/titanate nanotubes photocatalysts: preparation and characterization. J Hazard Mater 198:78–86CrossRef
48.
go back to reference Khalid NR, Ahmed E, Hong Z, Sana L, Ahmed M (2013) Enhanced photocatalytic activity of graphene–TiO2 composite under visible light irradiation. Curr Appl Phys 13:659–663CrossRef Khalid NR, Ahmed E, Hong Z, Sana L, Ahmed M (2013) Enhanced photocatalytic activity of graphene–TiO2 composite under visible light irradiation. Curr Appl Phys 13:659–663CrossRef
49.
go back to reference Wang DF, Chen D, Ping GX, Wang C, Chen HZ, Shu KY (2012) Preparation and photocatalysis properties of TiO2/graphene nanocomposites. Adv Mater Res 430–432:1005–1008 Wang DF, Chen D, Ping GX, Wang C, Chen HZ, Shu KY (2012) Preparation and photocatalysis properties of TiO2/graphene nanocomposites. Adv Mater Res 430–432:1005–1008
50.
go back to reference Wang F, Zhang K (2011) Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J Mol Catal A 345:101–107CrossRef Wang F, Zhang K (2011) Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J Mol Catal A 345:101–107CrossRef
51.
go back to reference Zhou X, Shi T, Wu J, Zhou H (2013) (001) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: synthesis, characterization and application in photocatalytic degradation. Appl Surf Sci 287:359–368CrossRef Zhou X, Shi T, Wu J, Zhou H (2013) (001) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: synthesis, characterization and application in photocatalytic degradation. Appl Surf Sci 287:359–368CrossRef
52.
go back to reference Li Z, Gao B, Chen GZ, Mokaya R, Sotiropoulos S, Puma GL (2011) Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl Catal B 110:50–57CrossRef Li Z, Gao B, Chen GZ, Mokaya R, Sotiropoulos S, Puma GL (2011) Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl Catal B 110:50–57CrossRef
53.
go back to reference Akhavan O (2010) Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4:4174–4180CrossRef Akhavan O (2010) Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4:4174–4180CrossRef
54.
go back to reference Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Van Tendeloo G, Vanhulsel A, Van Haesendonck C (2008) Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19:305604CrossRef Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Van Tendeloo G, Vanhulsel A, Van Haesendonck C (2008) Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19:305604CrossRef
55.
go back to reference Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
56.
go back to reference Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1290CrossRef Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1290CrossRef
57.
go back to reference Xu C, Wang J, Wan L, Lin J, Wang X (2011) Microwave-assisted covalent modification of graphene nanosheets with hydroxypropyl-β-cyclodextrin and its electrochemical detection of phenolic organic pollutants. J Mater Chem 21:10463–10471CrossRef Xu C, Wang J, Wan L, Lin J, Wang X (2011) Microwave-assisted covalent modification of graphene nanosheets with hydroxypropyl-β-cyclodextrin and its electrochemical detection of phenolic organic pollutants. J Mater Chem 21:10463–10471CrossRef
58.
go back to reference Lambert TN, Chavez CA, Hernandez-Sanchez B, Lu P, Bell NS, Ambrosini A, Friedman T, Boyle TJ, Wheeler DR, Huber DL (2009) Synthesis and characterization of titania—graphene nanocomposites. J Phys Chem C 113:19812–19823CrossRef Lambert TN, Chavez CA, Hernandez-Sanchez B, Lu P, Bell NS, Ambrosini A, Friedman T, Boyle TJ, Wheeler DR, Huber DL (2009) Synthesis and characterization of titania—graphene nanocomposites. J Phys Chem C 113:19812–19823CrossRef
59.
go back to reference Balachandran U, Eror NG (1982) Raman spectra of titanium dioxide. J Solid State Chem 42:276–282CrossRef Balachandran U, Eror NG (1982) Raman spectra of titanium dioxide. J Solid State Chem 42:276–282CrossRef
60.
go back to reference Hardcastle FD (2011) Raman spectroscopy of titania (TiO2) nanotubular water-splitting catalysts. JAAS 65:43–48 Hardcastle FD (2011) Raman spectroscopy of titania (TiO2) nanotubular water-splitting catalysts. JAAS 65:43–48
61.
go back to reference Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261:3–18CrossRef Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261:3–18CrossRef
62.
go back to reference Lee H-I, Kim J-H, Lee H-S, Lee W-D (2010) Purification of Toxic Compounds in Water and Treatment of Polymeric Materials. In: Anpo M, Kamat PV (eds) Environmentally benign photocatalysts. Springer, New York, pp 345–402CrossRef Lee H-I, Kim J-H, Lee H-S, Lee W-D (2010) Purification of Toxic Compounds in Water and Treatment of Polymeric Materials. In: Anpo M, Kamat PV (eds) Environmentally benign photocatalysts. Springer, New York, pp 345–402CrossRef
63.
go back to reference Horspool WM (2003) Photochemistry of Phenols. In: Rappoport Z (ed) The Chemistry of phenols. Wiley, Chichester, pp 1085–1087 Horspool WM (2003) Photochemistry of Phenols. In: Rappoport Z (ed) The Chemistry of phenols. Wiley, Chichester, pp 1085–1087
64.
go back to reference Talrose V, Yermakov AN, Usov AA, Goncharova AA, Leskin AN, Messineva NA, Trusova NV, Efimkina MV (2011) UV/Visible Spectra. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook. NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg. http://webbook.nist.gov. Talrose V, Yermakov AN, Usov AA, Goncharova AA, Leskin AN, Messineva NA, Trusova NV, Efimkina MV (2011) UV/Visible Spectra. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook. NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg. http://​webbook.​nist.​gov.
65.
go back to reference Zhang X, Wang Q, Zou L-H, You J-W (2016) Facile fabrication of titanium dioxide/fullerene nanocomposite and its enhanced visible photocatalytic activity. J Colloid Interface Sci 466:56–61CrossRef Zhang X, Wang Q, Zou L-H, You J-W (2016) Facile fabrication of titanium dioxide/fullerene nanocomposite and its enhanced visible photocatalytic activity. J Colloid Interface Sci 466:56–61CrossRef
66.
go back to reference Melikian AA, Chen K-M, Li H, Sodum R, Fiala E, El-Bayoumy K (2008) The role of nitric oxide on DNA damage induced by benzene metabolites. Oncol Rep 19:1331–1337 Melikian AA, Chen K-M, Li H, Sodum R, Fiala E, El-Bayoumy K (2008) The role of nitric oxide on DNA damage induced by benzene metabolites. Oncol Rep 19:1331–1337
67.
go back to reference Grabowska E, Reszczyńska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res 46:5453–5471CrossRef Grabowska E, Reszczyńska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res 46:5453–5471CrossRef
68.
go back to reference Dixit A, Mungray AK, Chakraborty M (2010) Photochemical oxidation of phenol and chlorophenol by UV/H2O2/TiO2 process: a kinetic study. Int J Chem Eng Appl 1:247–250 Dixit A, Mungray AK, Chakraborty M (2010) Photochemical oxidation of phenol and chlorophenol by UV/H2O2/TiO2 process: a kinetic study. Int J Chem Eng Appl 1:247–250
Metadata
Title
Enhanced photocatalytic degradation of a phenolic compounds’ mixture using a highly efficient TiO2/reduced graphene oxide nanocomposite
Authors
H. Al-Kandari
A. M. Abdullah
A. M. Mohamed
S. Al-Kandari
Publication date
06-06-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0074-6

Other articles of this Issue 18/2016

Journal of Materials Science 18/2016 Go to the issue

Premium Partners