Skip to main content
Top
Published in: Optical and Quantum Electronics 13/2023

01-12-2023

Enhanced photocatalytic efficiency and biosensing in plasmonic nanostructures for the detection of bacteria in various analytes

Authors: Muhammad Tauseef Qureshi, Aqsa Tehseen, Tahir Iqbal, Sumera Afsheen, Sayyam Ahsan, Iqra Maryam, Bader Huwaimel, Reda Abdel Hameed, Othman Farghaly, Ayman Atta

Published in: Optical and Quantum Electronics | Issue 13/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The interaction of transverse magnetic (TM) plane waves with 1D metallic bowtie gratings on glass substrate has been used for surface plasmon polaritons (SPPs) excitation. Silver (Ag) bowtie metallic grating has been modelled in COMSOL Multiphysics 5.6 Licensed version, for different gap widths (GWs) and film thickness by keeping the periodicity constant. The 0th order transmission spectra for this grating with various geometrical parameters at normal incidence has been extracted and studied by far-field analysis. To check the photocatalytic enhancement, the method of enhanced field confinement is used by exciting SPPs at TiO2/air interface. The enhancement factor is examined by changing gap width (50–450 nm with step size of 100 nm) with fixed thickness and periodicity. The photocatalytic efficiency is also calculated and degradation of three dyes (Methyl Red (MR), Methyl Orange (MO) and Phenol (Ph)) by calculating their concentrations and photodegradation rate constant ‘k’ are studied as well. Far and near-field analysis are employed to study the optimum structure for effective absorption of light. The results of far-field are supported by applying near-field analysis at resonance wavelength. A brief comparison of enhancement factor and photocatalytic degradation with literature is also presented. Additionally, the plasmonic biosensor has been analyzed that can be used for wavelength range 400–1200 nm for the detection of bacteria in liquid analytes. The sensitivity of the proposed model has been calculated as 627.27 nm per RIU. This research provides a pathway to real-time applications which are helpful in fabrication of efficient plasmonic based photocatalytic devices for highest degradation efficiency and also for the plasmonic based biosensors for the detection of bacteria. Such grating devices with optimized parameters can also be used in the field plasmonic based solar cells for the improved efficiency.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bokare, A., Pai, M., Athawale, A.A.: Surface modified Nd doped TiO2 nanoparticles as photocatalysts in UV and solar light irradiation. Sol. Energy 91, 111–119 (2013)ADSCrossRef Bokare, A., Pai, M., Athawale, A.A.: Surface modified Nd doped TiO2 nanoparticles as photocatalysts in UV and solar light irradiation. Sol. Energy 91, 111–119 (2013)ADSCrossRef
go back to reference Chaudhary, V.S., et al.: Plasmonic biosensor with gold and titanium dioxide immobilized on photonic crystal fiber for blood composition detection. IEEE Sensors J. 22(9), 8474–8481 (2022)ADSCrossRef Chaudhary, V.S., et al.: Plasmonic biosensor with gold and titanium dioxide immobilized on photonic crystal fiber for blood composition detection. IEEE Sensors J. 22(9), 8474–8481 (2022)ADSCrossRef
go back to reference Chen, J., et al.: Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation. Appl. Surf. Sci. 467, 1000–1010 (2019)ADS Chen, J., et al.: Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation. Appl. Surf. Sci. 467, 1000–1010 (2019)ADS
go back to reference Cui, F., et al.: Advancing biosensors with machine learning. ACS Sensors 5(11), 3346–3364 (2020)CrossRef Cui, F., et al.: Advancing biosensors with machine learning. ACS Sensors 5(11), 3346–3364 (2020)CrossRef
go back to reference Daher, M.G., et al.: Design of a novel optical sensor for the detection of waterborne bacteria based on a photonic crystal with an ultra-high sensitivity. Opt. Quantum Electron. 54(2), 1–18 (2022)CrossRef Daher, M.G., et al.: Design of a novel optical sensor for the detection of waterborne bacteria based on a photonic crystal with an ultra-high sensitivity. Opt. Quantum Electron. 54(2), 1–18 (2022)CrossRef
go back to reference Fujishima, A., et al.: Titanium dioxide photocatalysis. J. Photobiol. C 1(1), 1–21 (2000)CrossRef Fujishima, A., et al.: Titanium dioxide photocatalysis. J. Photobiol. C 1(1), 1–21 (2000)CrossRef
go back to reference Hoffmann, M.R., et al.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995)CrossRef Hoffmann, M.R., et al.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995)CrossRef
go back to reference Iqbal, T., Afsheen, S.J.P.: Plasmonic band gap: role of the slit width in 1D metallic grating on higher refractive index substrate. Plasmonics 11(3), 885–893 (2016)CrossRef Iqbal, T., Afsheen, S.J.P.: Plasmonic band gap: role of the slit width in 1D metallic grating on higher refractive index substrate. Plasmonics 11(3), 885–893 (2016)CrossRef
go back to reference Iqbal, T., Afsheen, S.: One dimensional plasmonic grating: high sensitive biosensor. Plasmonics 12(1), 19–25 (2017)CrossRef Iqbal, T., Afsheen, S.: One dimensional plasmonic grating: high sensitive biosensor. Plasmonics 12(1), 19–25 (2017)CrossRef
go back to reference Iqbal, T., et al.: Investigation of plasmonic bandgap for 1D exposed and buried metallic gratings. Plasmonics 14, 493–499 (2019)CrossRef Iqbal, T., et al.: Investigation of plasmonic bandgap for 1D exposed and buried metallic gratings. Plasmonics 14, 493–499 (2019)CrossRef
go back to reference Iqbal, T., et al.: Rectangular and sinusoidal Au-grating as plasmonic sensor: a comparative study. Opt. Mater. 99, 109530–109541 (2020)CrossRef Iqbal, T., et al.: Rectangular and sinusoidal Au-grating as plasmonic sensor: a comparative study. Opt. Mater. 99, 109530–109541 (2020)CrossRef
go back to reference Iqbal, T., et al.: Study of plasmonic bandgap by optimization of geometrical parameters of metallic grating devices. Solid State Commun.Commun. 327, 114212–114225 (2021)CrossRef Iqbal, T., et al.: Study of plasmonic bandgap by optimization of geometrical parameters of metallic grating devices. Solid State Commun.Commun. 327, 114212–114225 (2021)CrossRef
go back to reference Javaid, M., Iqbal, T.J.P.: Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics 11(1), 167–173 (2016)CrossRef Javaid, M., Iqbal, T.J.P.: Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics 11(1), 167–173 (2016)CrossRef
go back to reference Kamat, P.V., Meisel, D.: Nanoparticles in advanced oxidation processes. Science 7(5–6), 282–287 (2002) Kamat, P.V., Meisel, D.: Nanoparticles in advanced oxidation processes. Science 7(5–6), 282–287 (2002)
go back to reference Karki, B., et al.: Zinc sulfide, silicon dioxide, and black phosphorus based ultra-sensitive surface plasmon biosensor. Opt. Quant. Electron. 54(2), 1–11 (2022a)CrossRef Karki, B., et al.: Zinc sulfide, silicon dioxide, and black phosphorus based ultra-sensitive surface plasmon biosensor. Opt. Quant. Electron. 54(2), 1–11 (2022a)CrossRef
go back to reference Karki, B., et al.: Advances in surface plasmon resonance-based biosensor technologies for cancer cell detection. Int. J. Opt. 2022, 1–10 (2022b)CrossRef Karki, B., et al.: Advances in surface plasmon resonance-based biosensor technologies for cancer cell detection. Int. J. Opt. 2022, 1–10 (2022b)CrossRef
go back to reference Karki, B., et al.: Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor. Optik 270, 1–10 (2022c)CrossRef Karki, B., et al.: Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor. Optik 270, 1–10 (2022c)CrossRef
go back to reference Karki, B., et al.: Sensitivity enhancement of refractive index-based surface plasmon resonance sensor for glucose detection. Opt. Quant. Electron. 54(9), 1–16 (2022d)CrossRef Karki, B., et al.: Sensitivity enhancement of refractive index-based surface plasmon resonance sensor for glucose detection. Opt. Quant. Electron. 54(9), 1–16 (2022d)CrossRef
go back to reference Karki, B., et al.: PtSe2 and black phosphorus employed for sensitivity improvement in the surface plasmon resonance sensor. J. Comput. Electron.Comput. Electron. 22(1), 106–115 (2023) Karki, B., et al.: PtSe2 and black phosphorus employed for sensitivity improvement in the surface plasmon resonance sensor. J. Comput. Electron.Comput. Electron. 22(1), 106–115 (2023)
go back to reference Karki, B. et al.: A simulation study for dengue virus detection using surface plasmon resonance sensor heterostructure of silver, barium titanate, and cerium oxide. Plasmonics, 1–10 (2023) Karki, B. et al.: A simulation study for dengue virus detection using surface plasmon resonance sensor heterostructure of silver, barium titanate, and cerium oxide. Plasmonics, 1–10 (2023)
go back to reference Kocabas, A., Senlik, S.S., Aydinli, A.: Plasmonic band gap cavities on biharmonic gratings. Phys. Rev. B 77(19), 1–15 (2008a)CrossRef Kocabas, A., Senlik, S.S., Aydinli, A.: Plasmonic band gap cavities on biharmonic gratings. Phys. Rev. B 77(19), 1–15 (2008a)CrossRef
go back to reference Kocabas, A., et al.: Plasmonic band gap structures for surface-enhanced Raman scattering. Opt. Express 16(17), 12469–12477 (2008b)ADSCrossRef Kocabas, A., et al.: Plasmonic band gap structures for surface-enhanced Raman scattering. Opt. Express 16(17), 12469–12477 (2008b)ADSCrossRef
go back to reference Lee, C.-H., et al.: Boosted photocatalytic efficiency through plasmonic field confinement with bowtie and diabolo nanostructures under LED irradiation. Opt. Express 24(16), 17541–17552 (2016a)ADSCrossRef Lee, C.-H., et al.: Boosted photocatalytic efficiency through plasmonic field confinement with bowtie and diabolo nanostructures under LED irradiation. Opt. Express 24(16), 17541–17552 (2016a)ADSCrossRef
go back to reference Lee, C.-H., et al.: Boosted photocatalytic efficiency through plasmonic field confinement with bowtie and diabolo nanostructures under LED irradiation. Opt. Express 24(16), 17541–17552 (2016b)ADSCrossRef Lee, C.-H., et al.: Boosted photocatalytic efficiency through plasmonic field confinement with bowtie and diabolo nanostructures under LED irradiation. Opt. Express 24(16), 17541–17552 (2016b)ADSCrossRef
go back to reference Munir, M., et al.: Efficient biosensing through 1D silver nanostructured devices using plasmonic effect. Nanotechnology 29, 1–23 (2018)MathSciNet Munir, M., et al.: Efficient biosensing through 1D silver nanostructured devices using plasmonic effect. Nanotechnology 29, 1–23 (2018)MathSciNet
go back to reference O'Connor, D.: Modelling of Nano-optic Light Delivery Mechanisms for Use in High Density Data Storage, Queen's University Belfast, 1–250 (2010) O'Connor, D.: Modelling of Nano-optic Light Delivery Mechanisms for Use in High Density Data Storage, Queen's University Belfast, 1–250 (2010)
go back to reference Parmar, J., et al.: Graphene-based refractive index sensor using machine learning for detection of mycobacterium tuberculosis bacteria, 1–14 (2022) Parmar, J., et al.: Graphene-based refractive index sensor using machine learning for detection of mycobacterium tuberculosis bacteria, 1–14 (2022)
go back to reference Pourmadadi, M. et al.: TiO2-based nanocomposites for cancer diagnosis and therapy: A comprehensive review. 104370–104381 (2023) Pourmadadi, M. et al.: TiO2-based nanocomposites for cancer diagnosis and therapy: A comprehensive review. 104370–104381 (2023)
go back to reference Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1–117 (1988) Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1–117 (1988)
go back to reference Singh, T.I., Singh, P., Karki, B.: Early detection of chikungunya virus utilizing the surface plasmon resonance comprising a silver-silicon-PtSe2 multilayer structure. Plasmonics, 1–8 (2023) Singh, T.I., Singh, P., Karki, B.: Early detection of chikungunya virus utilizing the surface plasmon resonance comprising a silver-silicon-PtSe2 multilayer structure. Plasmonics, 1–8 (2023)
go back to reference Sneath, P.H., et al.: Bergey’s Manual of Systematic Bacteriology, vol. 2. Williams & Wilkins, 1–2028 (1986) Sneath, P.H., et al.: Bergey’s Manual of Systematic Bacteriology, vol. 2. Williams & Wilkins, 1–2028 (1986)
go back to reference Taya, S.A., et al.: Cancer cell detector based on a slab waveguide of anisotropic, lossy, and dispersive left-handed material. Appl. Opt. 60(27), 8360–8367 (2021)ADSCrossRef Taya, S.A., et al.: Cancer cell detector based on a slab waveguide of anisotropic, lossy, and dispersive left-handed material. Appl. Opt. 60(27), 8360–8367 (2021)ADSCrossRef
go back to reference Vempati, S., Iqbal, T., Afsheen, S.: Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J. Appl. Phys. 118(4), 043103 (2015)ADSCrossRef Vempati, S., Iqbal, T., Afsheen, S.: Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J. Appl. Phys. 118(4), 043103 (2015)ADSCrossRef
go back to reference Vos, P., et al.: Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes, vol. 3. Springer Science & Business Media, 1–1346 (2011) Vos, P., et al.: Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes, vol. 3. Springer Science & Business Media, 1–1346 (2011)
go back to reference Watanabe, H., Honda, M., Yamamoto, N.: Size dependence of band-gaps in a one-dimensional plasmonic crystal. Opt. Express 22(5), 5155–5165 (2014)ADSCrossRef Watanabe, H., Honda, M., Yamamoto, N.: Size dependence of band-gaps in a one-dimensional plasmonic crystal. Opt. Express 22(5), 5155–5165 (2014)ADSCrossRef
go back to reference Yadav, A. et al.: Modeling, simulation and computational analysis of plasmonic optical sensor using BaTiO3 in diabetes mellitus. Int. J. Inf. Technol. 13, 2163–2168 (2021) Yadav, A. et al.: Modeling, simulation and computational analysis of plasmonic optical sensor using BaTiO3 in diabetes mellitus. Int. J. Inf. Technol. 13, 2163–2168 (2021)
go back to reference Yadav, A. et al.: Effect of 2-D nanomaterials on sensitivity of plasmonic biosensor for efficient urine glucose detection. Front. Mater. 9(12), 1106251 (2023)ADSCrossRef Yadav, A. et al.: Effect of 2-D nanomaterials on sensitivity of plasmonic biosensor for efficient urine glucose detection. Front. Mater. 9(12), 1106251 (2023)ADSCrossRef
go back to reference Yadav, A. et al.: Highly sensitive bimetallic-metal nitride SPR biosensor for urine glucose detection. IEEE Trans. NanoBiosci. (2023) Yadav, A. et al.: Highly sensitive bimetallic-metal nitride SPR biosensor for urine glucose detection. IEEE Trans. NanoBiosci. (2023)
go back to reference Zakharian, A.R., Moloney, J.V., Mansuripur, M.: Surface plasmon polaritons on metallic surfaces. Opt. Express 15(1), 183–197 (2007)ADSCrossRef Zakharian, A.R., Moloney, J.V., Mansuripur, M.: Surface plasmon polaritons on metallic surfaces. Opt. Express 15(1), 183–197 (2007)ADSCrossRef
Metadata
Title
Enhanced photocatalytic efficiency and biosensing in plasmonic nanostructures for the detection of bacteria in various analytes
Authors
Muhammad Tauseef Qureshi
Aqsa Tehseen
Tahir Iqbal
Sumera Afsheen
Sayyam Ahsan
Iqra Maryam
Bader Huwaimel
Reda Abdel Hameed
Othman Farghaly
Ayman Atta
Publication date
01-12-2023
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 13/2023
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05345-z

Other articles of this Issue 13/2023

Optical and Quantum Electronics 13/2023 Go to the issue