Skip to main content
Top
Published in: Journal of Materials Science 12/2018

15-03-2018 | Electronic materials

Enhanced thermoelectric performance of bismuth-doped magnesium silicide synthesized under high pressure

Authors: Jianghua Li, Xiaopu Li, Chen Chen, Wentao Hu, Fengrong Yu, Zhisheng Zhao, Long Zhang, Dongli Yu, Yongjun Tian, Bo Xu

Published in: Journal of Materials Science | Issue 12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polycrystalline Mg2Si1−xBi x compounds were prepared with high-pressure synthesis followed by spark plasma sintering. The structural and compositional analyses indicate a dominant antifluorite phase with the oxidation and volatilizing loss of Mg highly suppressed. High-pressure synthesis promotes Bi doping and the formation of interstitial Mg, both of which contribute electrons and give rise to high carrier concentration. Meanwhile, a relatively high carrier mobility is maintained with elevating carrier concentration, beneficial to the thermoelectric properties enhancement of our high-pressure synthesized samples. The optimal Mg2Si0.985Bi0.015 possesses the highest power factor and the lowest thermal conductivity. As a result, the maximal ZT of 0.98 is achieved at 883 K, one of the highest values for the Bi-doped binary Mg2Si compounds. Our results thus indicate the advantage of high pressure in synthesizing Mg2Si-based thermoelectric materials with enhanced thermoelectric performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Shi X, Chen L, Uher C (2016) Recent advances in high-performance bulk thermoelectric materials. Int Mater Rev 61:379–415CrossRef Shi X, Chen L, Uher C (2016) Recent advances in high-performance bulk thermoelectric materials. Int Mater Rev 61:379–415CrossRef
2.
go back to reference Tan G, Zhao LD, Kanatzidis MG (2016) Rationally designing high-performance bulk thermoelectric materials. Chem Rev 116:12123–12149CrossRef Tan G, Zhao LD, Kanatzidis MG (2016) Rationally designing high-performance bulk thermoelectric materials. Chem Rev 116:12123–12149CrossRef
3.
go back to reference He J, Tritt TM (2017) Advances in thermoelectric materials research: looking back and moving forward. Science 357:eaak9997CrossRef He J, Tritt TM (2017) Advances in thermoelectric materials research: looking back and moving forward. Science 357:eaak9997CrossRef
4.
go back to reference Yang L, Chen Z-G, Dargusch MS et al (2017) High performance thermoelectric materials: progress and their applications. Adv Energy Mater 7:1701797 Yang L, Chen Z-G, Dargusch MS et al (2017) High performance thermoelectric materials: progress and their applications. Adv Energy Mater 7:1701797
5.
go back to reference Pei Y, Shi X, LaLonde A et al (2011) Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473:66–69CrossRef Pei Y, Shi X, LaLonde A et al (2011) Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473:66–69CrossRef
6.
go back to reference Pei Y, Wang H, Snyder GJ (2012) Band engineering of thermoelectric materials. Adv Mater 24:6125–6135CrossRef Pei Y, Wang H, Snyder GJ (2012) Band engineering of thermoelectric materials. Adv Mater 24:6125–6135CrossRef
7.
go back to reference Slack GA (1995) New materials and performance limits for thermoelectric cooling. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press, Boca Raton, pp 407–440 Slack GA (1995) New materials and performance limits for thermoelectric cooling. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press, Boca Raton, pp 407–440
8.
go back to reference Biswas K, He J, Blum ID et al (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489:414–418CrossRef Biswas K, He J, Blum ID et al (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489:414–418CrossRef
9.
go back to reference Poudel B, Hao Q, Ma Y et al (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638CrossRef Poudel B, Hao Q, Ma Y et al (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638CrossRef
10.
go back to reference Cheng X, Farahi N, Kleinke H (2016) Mg2Si-based materials for the thermoelectric energy conversion. JOM 68:2680–2687CrossRef Cheng X, Farahi N, Kleinke H (2016) Mg2Si-based materials for the thermoelectric energy conversion. JOM 68:2680–2687CrossRef
11.
go back to reference Bux SK, Yeung MT, Toberer ES et al (2011) Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. J Mater Chem 21:12259–12266CrossRef Bux SK, Yeung MT, Toberer ES et al (2011) Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. J Mater Chem 21:12259–12266CrossRef
12.
go back to reference Farahi N, VanZant M, Zhao J et al (2014) Sb- and Bi-doped Mg2Si: location of the dopants, micro- and nanostructures, electronic structures and thermoelectric properties. Dalton Trans 43:14983–14991CrossRef Farahi N, VanZant M, Zhao J et al (2014) Sb- and Bi-doped Mg2Si: location of the dopants, micro- and nanostructures, electronic structures and thermoelectric properties. Dalton Trans 43:14983–14991CrossRef
13.
go back to reference Ioannou M, Polymeris GS, Hatzikraniotis E et al (2014) Effect of Bi-doping and Mg-excess on the thermoelectric properties of Mg2Si materials. J Phys Chem Solids 75:984–991CrossRef Ioannou M, Polymeris GS, Hatzikraniotis E et al (2014) Effect of Bi-doping and Mg-excess on the thermoelectric properties of Mg2Si materials. J Phys Chem Solids 75:984–991CrossRef
15.
go back to reference Zhang Q, Su X, Yan Y et al (2016) Phase segregation and superior thermoelectric properties of Mg2Si1−xSbx (0 ≤ x ≤ 0.025) prepared by ultrafast self-propagating high-temperature synthesis. ACS Appl Mater Interfaces 8:3268–3276CrossRef Zhang Q, Su X, Yan Y et al (2016) Phase segregation and superior thermoelectric properties of Mg2Si1−xSbx (0 ≤ x ≤ 0.025) prepared by ultrafast self-propagating high-temperature synthesis. ACS Appl Mater Interfaces 8:3268–3276CrossRef
16.
go back to reference Khan AU, Vlachos N, Kyratsi T (2013) High thermoelectric figure of merit of Mg2Si0.55Sn0.4Ge0.05 materials doped with Bi and Sb. Scr Mater 69:606–609CrossRef Khan AU, Vlachos N, Kyratsi T (2013) High thermoelectric figure of merit of Mg2Si0.55Sn0.4Ge0.05 materials doped with Bi and Sb. Scr Mater 69:606–609CrossRef
17.
go back to reference Liu W, Zhang Q, Yin K et al (2013) High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions. J Solid State Chem 203:333–339CrossRef Liu W, Zhang Q, Yin K et al (2013) High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions. J Solid State Chem 203:333–339CrossRef
18.
go back to reference Saparamadu U, Mao J, Dahal K et al (2017) The effect of charge carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25. Acta Mater 124:528–535CrossRef Saparamadu U, Mao J, Dahal K et al (2017) The effect of charge carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25. Acta Mater 124:528–535CrossRef
19.
go back to reference de Boor J, Dasgupta T, Kolb H et al (2014) Microstructural effects on thermoelectric efficiency: a case study on magnesium silicide. Acta Mater 77:68–75CrossRef de Boor J, Dasgupta T, Kolb H et al (2014) Microstructural effects on thermoelectric efficiency: a case study on magnesium silicide. Acta Mater 77:68–75CrossRef
20.
go back to reference Gao H, Zhu T, Liu X et al (2011) Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting. J Mater Chem 21:5933–5937CrossRef Gao H, Zhu T, Liu X et al (2011) Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting. J Mater Chem 21:5933–5937CrossRef
21.
go back to reference Yi T, Chen S, Li S et al (2012) Synthesis and characterization of Mg2Si/Si nanocomposites prepared from MgH2 and silicon, and their thermoelectric properties. J Mater Chem 22:24805–24813CrossRef Yi T, Chen S, Li S et al (2012) Synthesis and characterization of Mg2Si/Si nanocomposites prepared from MgH2 and silicon, and their thermoelectric properties. J Mater Chem 22:24805–24813CrossRef
22.
go back to reference Cai B, Li J, Sun H et al (2017) Sodium doped polycrystalline SnSe: high pressure synthesis and thermoelectric properties. J Alloys Compd 727:1014–1019CrossRef Cai B, Li J, Sun H et al (2017) Sodium doped polycrystalline SnSe: high pressure synthesis and thermoelectric properties. J Alloys Compd 727:1014–1019CrossRef
23.
go back to reference Kang YL, Zhang Q, Fan CZ et al (2017) High pressure synthesis and thermoelectric properties of polycrystalline Bi2Se3. J Alloys Compd 700:223–227CrossRef Kang YL, Zhang Q, Fan CZ et al (2017) High pressure synthesis and thermoelectric properties of polycrystalline Bi2Se3. J Alloys Compd 700:223–227CrossRef
24.
go back to reference Yang M, Zhu H, Li H et al (2017) Electrical transport and thermoelectric properties of PbTe1−xIx synthesized by high pressure and high temperature. J Alloys Compd 696:161–165CrossRef Yang M, Zhu H, Li H et al (2017) Electrical transport and thermoelectric properties of PbTe1−xIx synthesized by high pressure and high temperature. J Alloys Compd 696:161–165CrossRef
25.
go back to reference Zhang J, Xu B, Wang L-M et al (2012) High-pressure synthesis of phonon-glass electron-crystal featured thermoelectric LixCo4Sb12. Acta Mater 60:1246–1251CrossRef Zhang J, Xu B, Wang L-M et al (2012) High-pressure synthesis of phonon-glass electron-crystal featured thermoelectric LixCo4Sb12. Acta Mater 60:1246–1251CrossRef
26.
go back to reference Zhang Y, Jia X, Sun H et al (2016) Effect of high pressure on thermoelectric performance and electronic structure of SnSe via HPHT. J Alloys Compd 667:123–129CrossRef Zhang Y, Jia X, Sun H et al (2016) Effect of high pressure on thermoelectric performance and electronic structure of SnSe via HPHT. J Alloys Compd 667:123–129CrossRef
27.
go back to reference Zhu P, Jia X, Chen H et al (2002) A new method of synthesis for thermoelectric materials: HPHT. Solid State Commun 123:43–47CrossRef Zhu P, Jia X, Chen H et al (2002) A new method of synthesis for thermoelectric materials: HPHT. Solid State Commun 123:43–47CrossRef
28.
go back to reference Badding JV (1998) High-pressure synthesis, characterization, and tuning of solid state materials. Annu Rev Mater Sci 28:631–658CrossRef Badding JV (1998) High-pressure synthesis, characterization, and tuning of solid state materials. Annu Rev Mater Sci 28:631–658CrossRef
29.
go back to reference Imai Y, Mori Y, Nakamura S et al (2016) Consideration about the synthesis pressure effect on lattice defects of Mg2Si using 1st principle calculations. J Alloys Compd 664:369–377CrossRef Imai Y, Mori Y, Nakamura S et al (2016) Consideration about the synthesis pressure effect on lattice defects of Mg2Si using 1st principle calculations. J Alloys Compd 664:369–377CrossRef
30.
go back to reference Li J, Li X, Cai B et al (2018) Enhanced thermoelectric performance of high pressure synthesized Sb-doped Mg2Si. J Alloys and Compd 741:1148–1152CrossRef Li J, Li X, Cai B et al (2018) Enhanced thermoelectric performance of high pressure synthesized Sb-doped Mg2Si. J Alloys and Compd 741:1148–1152CrossRef
31.
go back to reference Choi S-M, Kim K-H, Kim I-H et al (2011) Thermoelectric properties of the Bi-doped Mg2Si system. Curr Appl Phys 11:S388–S391CrossRef Choi S-M, Kim K-H, Kim I-H et al (2011) Thermoelectric properties of the Bi-doped Mg2Si system. Curr Appl Phys 11:S388–S391CrossRef
32.
go back to reference Nieroda P, Leszczynski J, Kolezynski A (2017) Bismuth doped Mg2Si with improved homogeneity: synthesis, characterization and optimization of thermoelectric properties. J Phys Chem Solids 103:147–159CrossRef Nieroda P, Leszczynski J, Kolezynski A (2017) Bismuth doped Mg2Si with improved homogeneity: synthesis, characterization and optimization of thermoelectric properties. J Phys Chem Solids 103:147–159CrossRef
33.
go back to reference Tani J-I, Kido H (2005) Thermoelectric properties of Bi-doped Mg2Si semiconductors. Phys B 364:218–224CrossRef Tani J-I, Kido H (2005) Thermoelectric properties of Bi-doped Mg2Si semiconductors. Phys B 364:218–224CrossRef
34.
go back to reference Caillat T, Borshchevsky A, Fleurial JP (1996) Properties of single crystalline semiconducting CoSb3. J Appl Phys 80:4442–4449CrossRef Caillat T, Borshchevsky A, Fleurial JP (1996) Properties of single crystalline semiconducting CoSb3. J Appl Phys 80:4442–4449CrossRef
35.
go back to reference Du Z, Zhu T, Chen Y et al (2012) Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions. J Mater Chem 22:6838–6844CrossRef Du Z, Zhu T, Chen Y et al (2012) Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions. J Mater Chem 22:6838–6844CrossRef
36.
go back to reference Kim H-S, Gibbs ZM, Tang Y et al (2015) Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater 3:041506CrossRef Kim H-S, Gibbs ZM, Tang Y et al (2015) Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater 3:041506CrossRef
37.
go back to reference Brazhkin VV (2007) High-pressure synthesized materials: treasures and hints. High Press Res 27:333–351CrossRef Brazhkin VV (2007) High-pressure synthesized materials: treasures and hints. High Press Res 27:333–351CrossRef
Metadata
Title
Enhanced thermoelectric performance of bismuth-doped magnesium silicide synthesized under high pressure
Authors
Jianghua Li
Xiaopu Li
Chen Chen
Wentao Hu
Fengrong Yu
Zhisheng Zhao
Long Zhang
Dongli Yu
Yongjun Tian
Bo Xu
Publication date
15-03-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2185-8

Other articles of this Issue 12/2018

Journal of Materials Science 12/2018 Go to the issue

Premium Partners