Skip to main content
Top
Published in: Journal of Polymer Research 3/2015

01-03-2015 | Original Paper

Enhancement in pyroelectric detection sensitivity for flexible LiNbO3/PVDF nanocomposite films by inclusion content control

Authors: M. S. Jayalakshmy, J. Philip

Published in: Journal of Polymer Research | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The pyroelectric properties of polymer-ceramic nanocomposites of Lithium niobate/Poly (vinylidene fluoride) or LiNbO3/PVDF (abbreviated LN/PVDF) for thermal/infrared sensing applications are reported in this work. The composites are prepared by dispersing nanoparticles of LiNbO3, with particle size in the range 45–65 nm, in β-PVDF matrix at varying volume fractions, and cast in the form of flexible films by solvent-cast technique. The electro-active β-phase of PVDF is confirmed by powder X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC) analyses. The thermal properties, thermal conductivity and specific heat capacity, of the composites are determined by a photothermal technique. The prepared films have been poled in a high dc electric field, and their pyroelectric and dielectric properties measured by direct methods. From these data the pyroelectric figures of merit of the composite films have been determined and their values compared with corresponding values for pure PVDF film. The Shore hardness of the films has been measured to estimate the extent to which the flexibility of the films is affected by the addition of ceramic. Significant enhancement in pyroelectric sensitivity has been obtained with increase in volume fraction of LiNbO3 nanoparticles. However, this enhancement is at the expense of the flexibility of the composite; so one has to strike a balance between the two while selecting a suitable composition for the development of pyroelectric sensors with these materials. The results of this work provide guidelines for this selection.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lee J, Mahendra S, Alvarez PJJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4:3580–3590CrossRef Lee J, Mahendra S, Alvarez PJJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4:3580–3590CrossRef
2.
go back to reference Saji VS, Choe HC, Yeung KWK (2010) Nanotechnology in biomedical applications: a review. Int J Nano Biomater 3:119–139CrossRef Saji VS, Choe HC, Yeung KWK (2010) Nanotechnology in biomedical applications: a review. Int J Nano Biomater 3:119–139CrossRef
3.
go back to reference Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133–2137CrossRef Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133–2137CrossRef
4.
go back to reference Iavicoli I, Fontana L, Leso V, Bergamaschi A (2013) The effects of nanomaterials as endocrine disruptors. Int J Mol Sci 14:16732–16801CrossRef Iavicoli I, Fontana L, Leso V, Bergamaschi A (2013) The effects of nanomaterials as endocrine disruptors. Int J Mol Sci 14:16732–16801CrossRef
5.
go back to reference Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F (2011) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in Vivo. ACS Nano 5:5390–5399CrossRef Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F (2011) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in Vivo. ACS Nano 5:5390–5399CrossRef
6.
go back to reference Sethi M, Pacardo DB, Knecht MR (2010) Biological surface effects of metallic nanomaterials for applications in assembly and catalysis. Langmuir 26:15121–15134CrossRef Sethi M, Pacardo DB, Knecht MR (2010) Biological surface effects of metallic nanomaterials for applications in assembly and catalysis. Langmuir 26:15121–15134CrossRef
7.
go back to reference Orvatinia M, Heydarianasl M (2012) A new method for detection of continuous infrared radiation by pyroelectric detectors. Sensors Actuators A Phys 174:52–57CrossRef Orvatinia M, Heydarianasl M (2012) A new method for detection of continuous infrared radiation by pyroelectric detectors. Sensors Actuators A Phys 174:52–57CrossRef
8.
go back to reference Batra AK, Aggarwal MD (2013) Pyroelectric materials: Infrared detectors, particle accelerators, and energy harvesters. SPIE Press Book, ISBN: 9780819493316 Batra AK, Aggarwal MD (2013) Pyroelectric materials: Infrared detectors, particle accelerators, and energy harvesters. SPIE Press Book, ISBN: 9780819493316
9.
go back to reference Rogalski A (2011) Infrared detectors, 2nd edn. CRC Press, Taylor & Francis Group, USA Rogalski A (2011) Infrared detectors, 2nd edn. CRC Press, Taylor & Francis Group, USA
10.
go back to reference Goniakowski J, Finocchi F, Noguera C (2008) Polarity of oxide surfaces and nanostructures. Rep Prog Phys 71:016501/1-55CrossRef Goniakowski J, Finocchi F, Noguera C (2008) Polarity of oxide surfaces and nanostructures. Rep Prog Phys 71:016501/1-55CrossRef
11.
go back to reference Rosenman G, Shur D, Krasik YE, Dunaevsky A (2000) Electron emission from ferroelectrics. J Appl Phys 88:6109–6161CrossRef Rosenman G, Shur D, Krasik YE, Dunaevsky A (2000) Electron emission from ferroelectrics. J Appl Phys 88:6109–6161CrossRef
12.
go back to reference Lang SB (2005) Pyroelectricity: from ancient curiosity to modern imaging tool. Phys Today 58:31–36CrossRef Lang SB (2005) Pyroelectricity: from ancient curiosity to modern imaging tool. Phys Today 58:31–36CrossRef
13.
go back to reference Whatmore RW (1986) Pyroelectric devices and materials. Rep Prog Phys 49:1335–1386CrossRef Whatmore RW (1986) Pyroelectric devices and materials. Rep Prog Phys 49:1335–1386CrossRef
14.
go back to reference Muralt P (2001) Micromachined infrared detectors based on pyroelectric thin films. Rep Prog Phys 64:1339–1388CrossRef Muralt P (2001) Micromachined infrared detectors based on pyroelectric thin films. Rep Prog Phys 64:1339–1388CrossRef
15.
go back to reference Corsi C (2012) Infrared: a key technology for security systems. Adv Opt Technol 2012:838752/1-15 Corsi C (2012) Infrared: a key technology for security systems. Adv Opt Technol 2012:838752/1-15
16.
go back to reference Cilulko J, Janiszewski P, Bogdaszewski M, Szczygielska E (2013) Infrared thermal imaging in studies of wild animals. Eur J Wildl Res 59:17–23CrossRef Cilulko J, Janiszewski P, Bogdaszewski M, Szczygielska E (2013) Infrared thermal imaging in studies of wild animals. Eur J Wildl Res 59:17–23CrossRef
17.
go back to reference Kad RS (2013) IR thermography is a condition monitor technique in industry. IJAREEIE 2:988–993 Kad RS (2013) IR thermography is a condition monitor technique in industry. IJAREEIE 2:988–993
18.
go back to reference Suriani MJ, Ali A, Khalina A, Sapuan SM, Haftirman AS (2012) Detection of defects in natural composite materials using thermal imaging technique. Mater Test 54:340–346CrossRef Suriani MJ, Ali A, Khalina A, Sapuan SM, Haftirman AS (2012) Detection of defects in natural composite materials using thermal imaging technique. Mater Test 54:340–346CrossRef
19.
go back to reference Hanemann T, Szabo DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468–3517CrossRef Hanemann T, Szabo DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468–3517CrossRef
20.
go back to reference Graca MPF, Prezas PR, Costa MM, Valente MA (2012) Structural and dielectric characterization of LiNbO3 nano-size powders obtained by Pechini method. J Sol-Gel Sci Technol 64:78–85CrossRef Graca MPF, Prezas PR, Costa MM, Valente MA (2012) Structural and dielectric characterization of LiNbO3 nano-size powders obtained by Pechini method. J Sol-Gel Sci Technol 64:78–85CrossRef
21.
go back to reference Rabiei P, Gunter P (2004) Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl Phys Lett 85:4603–4605CrossRef Rabiei P, Gunter P (2004) Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl Phys Lett 85:4603–4605CrossRef
22.
go back to reference Peng Q, Cohen RE (2011) Origin of pyroelectricity in LiNbO3. Phys Rev B 83:220103/1-4CrossRef Peng Q, Cohen RE (2011) Origin of pyroelectricity in LiNbO3. Phys Rev B 83:220103/1-4CrossRef
23.
go back to reference Jaffe B, Cook WR Jr, Jaffe H (2012) Piezoelectric ceramics. Academic, London Jaffe B, Cook WR Jr, Jaffe H (2012) Piezoelectric ceramics. Academic, London
24.
go back to reference Mohimi A, Richardson P, Catton P, Gan TH, Balachandran W, Selcuk C (2013) High temperature dielectric, elastic and piezoelectric coefficients of shear type lithium niobate crystals. Key Eng Mater 543:117–120CrossRef Mohimi A, Richardson P, Catton P, Gan TH, Balachandran W, Selcuk C (2013) High temperature dielectric, elastic and piezoelectric coefficients of shear type lithium niobate crystals. Key Eng Mater 543:117–120CrossRef
25.
go back to reference Bhatti IN, Banerjee M, Bhatti IN (2013) Effect of annealing and time of crystallization on structural and optical properties of PVDF thin film using acetone as solvent. IOSR-JAP 4:42–47CrossRef Bhatti IN, Banerjee M, Bhatti IN (2013) Effect of annealing and time of crystallization on structural and optical properties of PVDF thin film using acetone as solvent. IOSR-JAP 4:42–47CrossRef
26.
go back to reference Satapathy S, Pawar S, Gupta PK, Varma KBR (2011) Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bull Mater Sci 34:727–733CrossRef Satapathy S, Pawar S, Gupta PK, Varma KBR (2011) Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bull Mater Sci 34:727–733CrossRef
27.
go back to reference Seminara L, Capurro M, Cirillo P, Cannata G, Valle M (2011) Electro-mechanical characterization of piezoelectric PVDF polymer films for tactile sensors in robotics applications. Sensors Actuators A Phys 169:49–58CrossRef Seminara L, Capurro M, Cirillo P, Cannata G, Valle M (2011) Electro-mechanical characterization of piezoelectric PVDF polymer films for tactile sensors in robotics applications. Sensors Actuators A Phys 169:49–58CrossRef
28.
go back to reference Graz I, Krause M, Gogonea SB, Bauer S, Lacour SP, Ploss B, Zirkl M, Stadlober B, Wagner S (2009) Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin. J Appl Phys 106:034503/1-5CrossRef Graz I, Krause M, Gogonea SB, Bauer S, Lacour SP, Ploss B, Zirkl M, Stadlober B, Wagner S (2009) Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin. J Appl Phys 106:034503/1-5CrossRef
29.
go back to reference Jeon J, Lee HBR, Bao Z (2013) Flexible wireless temperature sensors based on Ni microparticle filled binary polymer composites. Adv Mater 25:850–855CrossRef Jeon J, Lee HBR, Bao Z (2013) Flexible wireless temperature sensors based on Ni microparticle filled binary polymer composites. Adv Mater 25:850–855CrossRef
30.
go back to reference Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71:235–244CrossRef Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71:235–244CrossRef
31.
go back to reference Byer RL, Roundy CB (1972) Pyroelectric coefficient direct measurement technique and application to a nanosecond-response-time detector. Ferroelectrics 3:333–338CrossRef Byer RL, Roundy CB (1972) Pyroelectric coefficient direct measurement technique and application to a nanosecond-response-time detector. Ferroelectrics 3:333–338CrossRef
32.
go back to reference Marshall JM, Zhang Q, Whatmore RW (2008) Corona poling of highly (001)/(100)-oriented lead zirconate titanate thin films. Thin Solid Films 516:4679–4684CrossRef Marshall JM, Zhang Q, Whatmore RW (2008) Corona poling of highly (001)/(100)-oriented lead zirconate titanate thin films. Thin Solid Films 516:4679–4684CrossRef
33.
go back to reference Yun S, Kim JH, Li Y, Kim J (2008) Alignment of cellulose chains of regenerated cellulose by corona poling and its piezoelectricity. J Appl Phys 103:083301/1-4 Yun S, Kim JH, Li Y, Kim J (2008) Alignment of cellulose chains of regenerated cellulose by corona poling and its piezoelectricity. J Appl Phys 103:083301/1-4
34.
go back to reference Menon CP, Philip J (2000) Simultaneous determination of thermal conductivity and heat capacity near solid state phase transitions by a photopyroelectric technique. Meas Sci Technol 11:1744–1749CrossRef Menon CP, Philip J (2000) Simultaneous determination of thermal conductivity and heat capacity near solid state phase transitions by a photopyroelectric technique. Meas Sci Technol 11:1744–1749CrossRef
35.
go back to reference Lee SH, Cho HH (2010) Crystal structure and thermal properties of poly(vinylidene fluoride)-carbon fiber composite films with various drawing temperatures and speeds. Fibers Polym 11:1146–1151CrossRef Lee SH, Cho HH (2010) Crystal structure and thermal properties of poly(vinylidene fluoride)-carbon fiber composite films with various drawing temperatures and speeds. Fibers Polym 11:1146–1151CrossRef
36.
go back to reference Yu L, Cebe P (2009) Crystal polymorphism in electrospun composite nanofibers of poly (vinylidene fluoride) with nanoclay. Polymer 50:2133–2141CrossRef Yu L, Cebe P (2009) Crystal polymorphism in electrospun composite nanofibers of poly (vinylidene fluoride) with nanoclay. Polymer 50:2133–2141CrossRef
37.
go back to reference Murugaraj P, Mainwaring D, Mora-Huertas N (2005) Dielectric enhancement in polymer-nanoparticle composites through interphase polarizability. J Appl Phys 98:054304/1-6CrossRef Murugaraj P, Mainwaring D, Mora-Huertas N (2005) Dielectric enhancement in polymer-nanoparticle composites through interphase polarizability. J Appl Phys 98:054304/1-6CrossRef
38.
go back to reference Sakai H, Konno K, Murata H (2009) Tuning of threshold voltage of organic field-effect transistors by space charge polarization. Appl Phys Lett 94:073304/1-3CrossRef Sakai H, Konno K, Murata H (2009) Tuning of threshold voltage of organic field-effect transistors by space charge polarization. Appl Phys Lett 94:073304/1-3CrossRef
39.
go back to reference Sidney BL, Das-Gupta DK (2000) Pyroelectricity: fundamentals and applications. Ferroelectr Rev 2:217–223 Sidney BL, Das-Gupta DK (2000) Pyroelectricity: fundamentals and applications. Ferroelectr Rev 2:217–223
40.
go back to reference Whatmore RW, Watton R (2001) Pyroelectric materials and devices’ in ‘infrared detectors and emitters: materials and devices’. Kluwer Academic Publishers, The Netherlands Whatmore RW, Watton R (2001) Pyroelectric materials and devices’ in ‘infrared detectors and emitters: materials and devices’. Kluwer Academic Publishers, The Netherlands
41.
go back to reference Guggilla P, Batra AK, Currie JR, Aggarwal MD, Alim MA, Lal RB (2006) Pyroelectric ceramics for infrared detection applications. Mater Lett 60:1937–1942CrossRef Guggilla P, Batra AK, Currie JR, Aggarwal MD, Alim MA, Lal RB (2006) Pyroelectric ceramics for infrared detection applications. Mater Lett 60:1937–1942CrossRef
42.
go back to reference Rogalski A (2003) Review- infrared detectors: status and trends. Prog Quantum Electron 27:59–210CrossRef Rogalski A (2003) Review- infrared detectors: status and trends. Prog Quantum Electron 27:59–210CrossRef
44.
go back to reference Chan HLW, Chan WK, Zhang Y, Choy CL (1998) Pyroelectric and piezoelectric properties of lead titanate/polyvinylidene fluoride-trifluoroethelene 0–3 composites. IEEE Trans Dielectr Electr Insul 5:505–512CrossRef Chan HLW, Chan WK, Zhang Y, Choy CL (1998) Pyroelectric and piezoelectric properties of lead titanate/polyvinylidene fluoride-trifluoroethelene 0–3 composites. IEEE Trans Dielectr Electr Insul 5:505–512CrossRef
45.
go back to reference Zhang QQ, Bernd Ploss HL, Chan W, Choi CL (2000) Integrated pyroelectric arrays based on PCLT/P(VDF-TrFE) composite. Sensors Actuators A Phys 86:216–219CrossRef Zhang QQ, Bernd Ploss HL, Chan W, Choi CL (2000) Integrated pyroelectric arrays based on PCLT/P(VDF-TrFE) composite. Sensors Actuators A Phys 86:216–219CrossRef
46.
go back to reference Hilczer B, Kulek J, Markiewicz E, Kosec M (2003) Dielectric and pyroelectric response of PLZT-P(VDF/TrFE) nano-composites. Ferroelectrics 293:253–265 Hilczer B, Kulek J, Markiewicz E, Kosec M (2003) Dielectric and pyroelectric response of PLZT-P(VDF/TrFE) nano-composites. Ferroelectrics 293:253–265
47.
go back to reference Guggilla P, Batra AK, Edwards ME (2009) Electrical characterization of LiTaO3:P(VDF–TrFE) composites. J Mater Sci 44:5469–5474CrossRef Guggilla P, Batra AK, Edwards ME (2009) Electrical characterization of LiTaO3:P(VDF–TrFE) composites. J Mater Sci 44:5469–5474CrossRef
48.
go back to reference Navid A, Lynch CS, Pilon L (2010) Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting. Smart Mater Struct 19:055006/1-13CrossRef Navid A, Lynch CS, Pilon L (2010) Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting. Smart Mater Struct 19:055006/1-13CrossRef
49.
go back to reference Dietze M, Krause J, Solterbeck CH, Es SM (2007) Thick film polymer-ceramic composites for pyroelectric applications. J Appl Phys 101:054113/1-7CrossRef Dietze M, Krause J, Solterbeck CH, Es SM (2007) Thick film polymer-ceramic composites for pyroelectric applications. J Appl Phys 101:054113/1-7CrossRef
50.
go back to reference Jayalakshmy MS, Philip J (2014) Pyroelectric figures of merit and associated properties of LiTaO3/polyvinylidene difluoride nanocomposites for thermal/infrared sensing. Sensors Actuators A Phys 206:121–126CrossRef Jayalakshmy MS, Philip J (2014) Pyroelectric figures of merit and associated properties of LiTaO3/polyvinylidene difluoride nanocomposites for thermal/infrared sensing. Sensors Actuators A Phys 206:121–126CrossRef
51.
go back to reference Barber P, Balasubramanian S, Anguchami Y, Gong S, Wibowo A, Gao H, Ploehn HJ, Loye HCZ (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2:1697–1733CrossRef Barber P, Balasubramanian S, Anguchami Y, Gong S, Wibowo A, Gao H, Ploehn HJ, Loye HCZ (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2:1697–1733CrossRef
Metadata
Title
Enhancement in pyroelectric detection sensitivity for flexible LiNbO3/PVDF nanocomposite films by inclusion content control
Authors
M. S. Jayalakshmy
J. Philip
Publication date
01-03-2015
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 3/2015
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-015-0688-4

Other articles of this Issue 3/2015

Journal of Polymer Research 3/2015 Go to the issue

Premium Partners