Skip to main content
Top

2019 | OriginalPaper | Chapter

Ensembling Descendant Term Classifiers to Improve Gene - Abnormal Phenotype Predictions

Authors : Marco Notaro, Max Schubach, Marco Frasca, Marco Mesiti, Peter N. Robinson, Giorgio Valentini

Published in: Computational Intelligence Methods for Bioinformatics and Biostatistics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Human Phenotype Ontology (HPO) provides a standard categorization of the phenotypic abnormalities encountered in human diseases and of the semantic relationship between them. Quite surprisingly the problem of the automated prediction of the association between genes and abnormal human phenotypes has been widely overlooked, even if this issue represents an important step toward the characterization of gene-disease associations, especially when no or very limited knowledge is available about the genetic etiology of the disease under study. We present a novel ensemble method able to capture the hierarchical relationships between HPO terms, and able to improve existing hierarchical ensemble algorithms by explicitly considering the predictions of the descendant terms of the ontology. In this way the algorithm exploits the information embedded in the most specific ontology terms that closely characterize the phenotypic information associated with each human gene. Genome-wide results obtained by integrating multiple sources of information show the effectiveness of the proposed approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Amberger, J., Bocchini, C., Amosh, A.: A new face and new challenges for online mendelian inheritance in man (OMIM). Hum. Mutat. 32, 564–7 (2011)CrossRef Amberger, J., Bocchini, C., Amosh, A.: A new face and new challenges for online mendelian inheritance in man (OMIM). Hum. Mutat. 32, 564–7 (2011)CrossRef
2.
go back to reference Ashburner, M., et al.: Creating the gene ontology resource: design and implementation. Genome Res. 11(8), 1425–1433 (2001)CrossRef Ashburner, M., et al.: Creating the gene ontology resource: design and implementation. Genome Res. 11(8), 1425–1433 (2001)CrossRef
3.
go back to reference Bolstad, B.M., Irizarry, R.A., Astrand, M., Speed, T.P.: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003)CrossRef Bolstad, B.M., Irizarry, R.A., Astrand, M., Speed, T.P.: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003)CrossRef
4.
go back to reference Chatr-Aryamontri, A., et al.: The BioGRID interaction database: 2013 update. Nucleic Acids Res. 41, 816–823 (2013)CrossRef Chatr-Aryamontri, A., et al.: The BioGRID interaction database: 2013 update. Nucleic Acids Res. 41, 816–823 (2013)CrossRef
5.
go back to reference Cormen, T., Leiserson, C., Rivest, R.L., Stein, S.: Introduction to Algorithms. MIT Press, Boston (2009)MATH Cormen, T., Leiserson, C., Rivest, R.L., Stein, S.: Introduction to Algorithms. MIT Press, Boston (2009)MATH
6.
go back to reference Franceschini, A., et al.: STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, 808–815 (2013)CrossRef Franceschini, A., et al.: STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, 808–815 (2013)CrossRef
8.
go back to reference Jiang, Y., et al.: An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biol. 17, 184 (2016)CrossRef Jiang, Y., et al.: An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biol. 17, 184 (2016)CrossRef
9.
go back to reference Kohler, S., Vasilevsky, N., Engelstad, M., et al.: The human phenotype ontology in 2017. Nucleic Acids Res. 45, D865 (2017)CrossRef Kohler, S., Vasilevsky, N., Engelstad, M., et al.: The human phenotype ontology in 2017. Nucleic Acids Res. 45, D865 (2017)CrossRef
10.
go back to reference Moreau, Y., Tranchevent, L.: Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nature Rev. Genet. 13, 523–536 (2012)CrossRef Moreau, Y., Tranchevent, L.: Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nature Rev. Genet. 13, 523–536 (2012)CrossRef
12.
go back to reference Re, M., Mesiti, M., Valentini, G.: A fast ranking algorithm for predicting gene functions in biomolecular networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 9, 1812–1818 (2012)CrossRef Re, M., Mesiti, M., Valentini, G.: A fast ranking algorithm for predicting gene functions in biomolecular networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 9, 1812–1818 (2012)CrossRef
14.
go back to reference Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE 10, 1–21 (2015) Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE 10, 1–21 (2015)
16.
go back to reference Smedley, D., et al.: A whole-genome analysis framework for effective identification of pathogenic regulatory variants in Mendelian disease. Am. J. Hum. Genet. 99, 595–606 (2016)CrossRef Smedley, D., et al.: A whole-genome analysis framework for effective identification of pathogenic regulatory variants in Mendelian disease. Am. J. Hum. Genet. 99, 595–606 (2016)CrossRef
17.
go back to reference Valentini, G.: True Path Rule hierarchical ensembles for genome-wide gene function prediction. IEEE/ACM Trans. Comput. Biol. Bioinf. 8, 832–847 (2011)CrossRef Valentini, G.: True Path Rule hierarchical ensembles for genome-wide gene function prediction. IEEE/ACM Trans. Comput. Biol. Bioinf. 8, 832–847 (2011)CrossRef
18.
go back to reference Valentini, G., Armano, G., Frasca, M., Lin, J., Mesiti, M., Re, M.: RANKS: a flexible tool for node label ranking and classification in biological networks. Bioinformatics 32, 2872 (2016)CrossRef Valentini, G., Armano, G., Frasca, M., Lin, J., Mesiti, M., Re, M.: RANKS: a flexible tool for node label ranking and classification in biological networks. Bioinformatics 32, 2872 (2016)CrossRef
19.
go back to reference Valentini, G., Köhler, S., Re, M., Notaro, M., Robinson, P.N.: Prediction of human gene - phenotype associations by exploiting the hierarchical structure of the human phenotype ontology. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 66–77. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16483-0_7CrossRef Valentini, G., Köhler, S., Re, M., Notaro, M., Robinson, P.N.: Prediction of human gene - phenotype associations by exploiting the hierarchical structure of the human phenotype ontology. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 66–77. Springer, Cham (2015). https://​doi.​org/​10.​1007/​978-3-319-16483-0_​7CrossRef
20.
go back to reference Valentini, G., Paccanaro, A., Caniza, H., Romero, A., Re, M.: An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods. Artif. Intell. Med. 61, 63–78 (2014)CrossRef Valentini, G., Paccanaro, A., Caniza, H., Romero, A., Re, M.: An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods. Artif. Intell. Med. 61, 63–78 (2014)CrossRef
21.
go back to reference Wang, P., et al.: Inference of gene-phenotype associations via protein-protein interaction and orthology. PLoS ONE 8, 1–8 (2013)CrossRef Wang, P., et al.: Inference of gene-phenotype associations via protein-protein interaction and orthology. PLoS ONE 8, 1–8 (2013)CrossRef
22.
go back to reference Zemojtel, T., et al.: Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome. Sci. Transl. Med. 6, 252ra123 (2014)CrossRef Zemojtel, T., et al.: Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome. Sci. Transl. Med. 6, 252ra123 (2014)CrossRef
Metadata
Title
Ensembling Descendant Term Classifiers to Improve Gene - Abnormal Phenotype Predictions
Authors
Marco Notaro
Max Schubach
Marco Frasca
Marco Mesiti
Peter N. Robinson
Giorgio Valentini
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-14160-8_8

Premium Partner