Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 2/2011

01-02-2011 | Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Environment-Assisted Cracking in Custom 465 Stainless Steel

Authors: E. U. Lee, R. Goswami, M. Jones, A. K. Vasudevan

Published in: Metallurgical and Materials Transactions A | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The influence of cold work and aging on the environment-assisted cracking (EAC) behavior and mechanical properties of Custom 465 stainless steel (SS) was studied. Four sets of specimens were made and tested. All specimens were initially solution annealed, rapidly cooled, and refrigerated (SAR condition). The first specimen set was steel in the SAR condition. The second specimen set was aged to the H1000 condition. The third specimen set was 60 pct cold worked, and the fourth specimen set was 60 pct cold worked and aged at temperatures ranging from 755 K to 825 K (482 °C to 552 °C) for 4 hours in air. The specimens were subsequently subjected to EAC and mechanical testing. The EAC testing was conducted, using the rising step load (RSL) technique, in aqueous solutions of NaCl of pH 7.3 with concentrations ranging from 0.0035 to 3.5 pct at room temperature. The microstructure, dislocation substructure, and crack paths, resulting from the cold work, aging, or subsequent EAC testing, were examined by optical microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The aging of the cold-worked specimens induced carbide precipitation within the martensite lath, but not at the lath or packet boundaries. In the aged specimens, as aging temperature rose, the threshold stress intensity for EAC (KIEAC), elongation, and fracture toughness increased, but the strength and hardness decreased. The KIEAC also decreased with increasing yield strength and NaCl concentration. In the SAR and H1000 specimens, the EAC propagated along the prior austenite grain boundary, while in the cold-worked and cold-worked and aged specimens, the EAC propagated along the martensite lath, and its packet and prior austenite grain boundaries. The controlling mechanism for the observed EAC was identified to be hydrogen embrittlement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
EAC is a cracking process in which the environment promotes crack growth or higher growth rates than would occur without the presence of the environment.
 
2
JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.
 
3
PHILIPS is a trademark of FEI Company, Hillsboro, OR.
 
Literature
1.
go back to reference R.B. Setterlund: Mater. Protect., 1965, vol. 4, pp. 27–29. R.B. Setterlund: Mater. Protect., 1965, vol. 4, pp. 27–29.
2.
go back to reference S.R. Novak: U.S. Steel Corp., Monroeville, PA, Jan. 1, 1968, AD825336L. S.R. Novak: U.S. Steel Corp., Monroeville, PA, Jan. 1, 1968, AD825336L.
3.
go back to reference E. Snape: Corrosion, 1968, vol. 24, pp. 261–82. E. Snape: Corrosion, 1968, vol. 24, pp. 261–82.
4.
5.
go back to reference N.A. Tiner and C.B. Gilpin: Corrosion, 1966, vol. 22, pp. 271–79. N.A. Tiner and C.B. Gilpin: Corrosion, 1966, vol. 22, pp. 271–79.
6.
go back to reference C.J. Slunder and W.K. Boyd: DMIC Report No. 151, Defense Metals Information Center, Battelle Memorial Institute, Columbus, OH, Apr. 14, 1961. C.J. Slunder and W.K. Boyd: DMIC Report No. 151, Defense Metals Information Center, Battelle Memorial Institute, Columbus, OH, Apr. 14, 1961.
7.
go back to reference R. Perry: Special Report 86, The Iron and Steel Institute, London, 1964, p. 227. R. Perry: Special Report 86, The Iron and Steel Institute, London, 1964, p. 227.
8.
go back to reference C.S. Carter, D.G. Farwick, A.M. Ross, and J.M. Uchida: Boeing Document D6-25219, The Boeing Company, Seattle, WA, Feb. 1970. C.S. Carter, D.G. Farwick, A.M. Ross, and J.M. Uchida: Boeing Document D6-25219, The Boeing Company, Seattle, WA, Feb. 1970.
9.
go back to reference H.P. Leckie: Proc. Conf. on Fundamental Aspects of Stress Corrosion Cracking, NACE, Houston, TX, 1969, p. 411. H.P. Leckie: Proc. Conf. on Fundamental Aspects of Stress Corrosion Cracking, NACE, Houston, TX, 1969, p. 411.
10.
go back to reference R.A. Davis, G.A. Dreyer, and W.C. Gallaugher: Corrosion, 1964, vol. 20, p. 93t. R.A. Davis, G.A. Dreyer, and W.C. Gallaugher: Corrosion, 1964, vol. 20, p. 93t.
11.
go back to reference D.F. Bulloch, T.W. Eichenberger, and J.L. Guthrie: AFML-TR-68-57 and Boeing Document D6-19769-3, The Boeing Company, Seattle, WA, Mar. 1968, AD 833650. D.F. Bulloch, T.W. Eichenberger, and J.L. Guthrie: AFML-TR-68-57 and Boeing Document D6-19769-3, The Boeing Company, Seattle, WA, Mar. 1968, AD 833650.
12.
go back to reference J.L. Guthrie: Boeing Document D6A10093-2, Phase II-C Report FA-SS-66-5, The Boeing Company, Seattle, WA, Mar. 1967, AD 818490. J.L. Guthrie: Boeing Document D6A10093-2, Phase II-C Report FA-SS-66-5, The Boeing Company, Seattle, WA, Mar. 1967, AD 818490.
13.
go back to reference A.H. Rosenstein and M.R. Gross: Report 2448, Naval Ships Research and Development Center, Annapolis, MD., Sept. 1967, AD 821456. A.H. Rosenstein and M.R. Gross: Report 2448, Naval Ships Research and Development Center, Annapolis, MD., Sept. 1967, AD 821456.
14.
go back to reference J.H. Mulherin: Trans. ASME J. Basic Eng., 1966, vol. 88, Ser. D, pp. 777–82. J.H. Mulherin: Trans. ASME J. Basic Eng., 1966, vol. 88, Ser. D, pp. 777–82.
15.
go back to reference E. Snape: Br. Corr. J., 1969, vol. 4, pp. 253–59. E. Snape: Br. Corr. J., 1969, vol. 4, pp. 253–59.
17.
go back to reference G.J. Biefer and J.G. Garrison: Internal Report PM-R-67-8, Physical Metallurgy Division, Department of Energy, Mines and Resources, Mines Branch, Ottawa, Canada, Mar. 14, 1967. G.J. Biefer and J.G. Garrison: Internal Report PM-R-67-8, Physical Metallurgy Division, Department of Energy, Mines and Resources, Mines Branch, Ottawa, Canada, Mar. 14, 1967.
18.
go back to reference D. Webster: Boeing Document D6-23870, The Boeing Company, Seattle, WA, Feb. 1969, AD 687724. D. Webster: Boeing Document D6-23870, The Boeing Company, Seattle, WA, Feb. 1969, AD 687724.
19.
go back to reference W.D. Benjamin and E.A. Steigerwald: Technical Report AFML-TR-67-98, Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH, Apr. 1967, AD 813716. W.D. Benjamin and E.A. Steigerwald: Technical Report AFML-TR-67-98, Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH, Apr. 1967, AD 813716.
20.
go back to reference N. Taniguchi and A.R. Troiano: Trans. Iron Steel Inst. Jpn., 1969, vol. 9, pp. 306–12. N. Taniguchi and A.R. Troiano: Trans. Iron Steel Inst. Jpn., 1969, vol. 9, pp. 306–12.
21.
go back to reference H.P. Leckie and A.W. Loginow: Corrosion, 1968, vol. 24, pp. 291–97. H.P. Leckie and A.W. Loginow: Corrosion, 1968, vol. 24, pp. 291–97.
22.
go back to reference ASM Handbook, vol. 8, Mechanical Testing, ASM INTERNATIONAL, Materials Park, OH, 1995, pp. 539–40. ASM Handbook, vol. 8, Mechanical Testing, ASM INTERNATIONAL, Materials Park, OH, 1995, pp. 539–40.
23.
go back to reference 2009 Annual Book of ASTM Standards, Sect. 3, vol. 03.01, E 8/E 8M-08, ASTM International, Conshohocken, PA, 2009. 2009 Annual Book of ASTM Standards, Sect. 3, vol. 03.01, E 8/E 8M-08, ASTM International, Conshohocken, PA, 2009.
24.
go back to reference 2009 Annual Book of ASTM Standards, Sect. 3, vol. 03-01, E 399-08, ASTM International, Conshohocken, PA, 2009. 2009 Annual Book of ASTM Standards, Sect. 3, vol. 03-01, E 399-08, ASTM International, Conshohocken, PA, 2009.
25.
go back to reference A.H. Priest: Met. Mater., 1969, vol. 3, p. 175. A.H. Priest: Met. Mater., 1969, vol. 3, p. 175.
26.
go back to reference A.J. Stavros and H.W. Paxton: Metall. Trans., 1970, vol. 1, pp. 3049–55. A.J. Stavros and H.W. Paxton: Metall. Trans., 1970, vol. 1, pp. 3049–55.
27.
go back to reference G. Sandoz, C.T. Fujii, and B.F. Brown: Corr. Sci. 1970, vol. 10, pp. 839–45.CrossRef G. Sandoz, C.T. Fujii, and B.F. Brown: Corr. Sci. 1970, vol. 10, pp. 839–45.CrossRef
28.
go back to reference B.F. Brown, C.T. Fujii, and E.P. Dahlberg: J. Electrochem. Soc., 1969, vol. 116, pp. 218–19.CrossRef B.F. Brown, C.T. Fujii, and E.P. Dahlberg: J. Electrochem. Soc., 1969, vol. 116, pp. 218–19.CrossRef
29.
go back to reference J.A. Smith, M.H. Peterson, and B.F. Brown: Corrosion, 1970, vol. 26, pp. 539–42. J.A. Smith, M.H. Peterson, and B.F. Brown: Corrosion, 1970, vol. 26, pp. 539–42.
30.
go back to reference Metals Handbook, vol. 13, Corrosion, 9th ed., ASM INTERNATIONAL, Metals Park, OH, 1987, pp. 145–63. Metals Handbook, vol. 13, Corrosion, 9th ed., ASM INTERNATIONAL, Metals Park, OH, 1987, pp. 145–63.
31.
go back to reference F. Zucchi, G. Trabanelli, and G. Demertzis: Corr. Sci., 1988, vol. 28, pp. 69–79.CrossRef F. Zucchi, G. Trabanelli, and G. Demertzis: Corr. Sci., 1988, vol. 28, pp. 69–79.CrossRef
32.
go back to reference R. D. Kane: Stainless Steels ‘84, The Institute of Metals, London, 1985, pp. 429–37. R. D. Kane: Stainless Steels ‘84, The Institute of Metals, London, 1985, pp. 429–37.
33.
go back to reference Thierry Cassagne: Joint EFC NACE Workshop, Freiburg, Germany, Sept. 10, 2007. Thierry Cassagne: Joint EFC NACE Workshop, Freiburg, Germany, Sept. 10, 2007.
34.
go back to reference G. Sandoz and R.L. Newbegin: Report of NRL Progress, Naval Research Laboratory, Washington, DC, May 1969, p. 29. G. Sandoz and R.L. Newbegin: Report of NRL Progress, Naval Research Laboratory, Washington, DC, May 1969, p. 29.
35.
go back to reference L. De Micheli, S.M.L. Agostinho, G. Trabanelli, and F. Zucchi: Mater. Res., 2002, vol. 5 (1). L. De Micheli, S.M.L. Agostinho, G. Trabanelli, and F. Zucchi: Mater. Res., 2002, vol. 5 (1).
36.
go back to reference R.P. Wei, K. Klier, G.W. Simmons, and Y.T. Chou: in Hydrogen Embrittlement and Stress Corrosion Cracking, A Troiano Festschrift, R. Gibala and R.F. Hehemann, eds., ASM, Metals Park, OH, 1984, pp. 103–33. R.P. Wei, K. Klier, G.W. Simmons, and Y.T. Chou: in Hydrogen Embrittlement and Stress Corrosion Cracking, A Troiano Festschrift, R. Gibala and R.F. Hehemann, eds., ASM, Metals Park, OH, 1984, pp. 103–33.
37.
go back to reference A.S. Tetelman: in Hydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 17–34. A.S. Tetelman: in Hydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 17–34.
38.
go back to reference H.H. Johnson: in Hydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 35–49. H.H. Johnson: in Hydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 35–49.
39.
go back to reference B.D. Beachem: Metall. Trans., 1973, vol. 3, Feb., pp. 437–51. B.D. Beachem: Metall. Trans., 1973, vol. 3, Feb., pp. 437–51.
40.
go back to reference M.H. Peterson, B.F. Brown, R.L. Newbegin, and R.E. Groover: Corrosion, 1967, vol. 23, pp. 142–48. M.H. Peterson, B.F. Brown, R.L. Newbegin, and R.E. Groover: Corrosion, 1967, vol. 23, pp. 142–48.
41.
go back to reference D. Webster: Boeing Document D6-23973, The Boeing Co., Seattle, WA, June 1969, AD 695794. D. Webster: Boeing Document D6-23973, The Boeing Co., Seattle, WA, June 1969, AD 695794.
42.
go back to reference Metals Handbook, vol. 13, Corrosion, 9th ed., ASM INTERNATIONAL, Metals Park, OH, 1987, pp. 244–82. Metals Handbook, vol. 13, Corrosion, 9th ed., ASM INTERNATIONAL, Metals Park, OH, 1987, pp. 244–82.
43.
go back to reference T.T. Shih and W.G. Clark, Jr.: in Environment-Sensitive Fracture, S.W. Dean, E.N. Pugh, and G.M. Uglansky, eds., ASTM STP 821, ASTM, Philadelphia, PA, 1984, pp. 325–40.CrossRef T.T. Shih and W.G. Clark, Jr.: in Environment-Sensitive Fracture, S.W. Dean, E.N. Pugh, and G.M. Uglansky, eds., ASTM STP 821, ASTM, Philadelphia, PA, 1984, pp. 325–40.CrossRef
44.
go back to reference C.S. Carter, D.E. Austin, and J.C. McMillan: Boeing Document D6-25459, The Boeing Co., Seattle, WA, Aug. 1970. C.S. Carter, D.E. Austin, and J.C. McMillan: Boeing Document D6-25459, The Boeing Co., Seattle, WA, Aug. 1970.
Metadata
Title
Environment-Assisted Cracking in Custom 465 Stainless Steel
Authors
E. U. Lee
R. Goswami
M. Jones
A. K. Vasudevan
Publication date
01-02-2011
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 2/2011
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-010-0401-5

Other articles of this Issue 2/2011

Metallurgical and Materials Transactions A 2/2011 Go to the issue

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Role of Slip Mode on Stress Corrosion Cracking Behavior

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Dissolution Condensation Mechanism of Stress Corrosion Cracking in Liquid Metals: Driving Force and Crack Kinetics

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Stress Corrosion Cracking—Crevice Interaction in Austenitic Stainless Steels Characterized By Acoustic Emission

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Effect of Loading History on Stress Corrosion Cracking of 7075-T651 Aluminum Alloy in Saline Aqueous Environment

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Role of Viscosity on Capillary Flow and Stress Corrosion Cracking Behavior

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Observation and Modeling of Stress Corrosion Cracking in High Pressure Gas Pipe Steel

Premium Partners