Skip to main content
Top
Published in: Contemporary Problems of Ecology 3/2021

01-05-2021

Enzymatic Biotesting: Scientific Basis and Application

Authors: E. N. Esimbekova, I. G. Torgashina, V. P. Kalyabina, V. A. Kratasyuk

Published in: Contemporary Problems of Ecology | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper provides a review of the current state of research in the field of biotesting, and the problems of environmental studies and ways to solve them are discussed. The basic principles and examples of using enzymes for detecting toxicants in various environmental samples are considered. Based on an analysis of numerous published data, the advantages and limitations, as well as the prospects for using enzymes for performing biotesting tasks, are assessed. A separate section of the review is devoted to bioluminescent enzymatic bioassays developed by the authors and successfully used for environmental monitoring of water, soil, and air. The necessity of developing a battery of enzymatic bioassays is substantiated. It allows one to have the most complete and accurate information about the degree of pollution of environmental objects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alonso-Lomillo, M.A., Domínguez-Renedo, O., del Torno-deRomán, L., and Arcos-Martínez, M.J., Horseradish peroxidase-screen printed biosensors for determination of Ochratoxin A, Anal. Chim. Acta, 2011, vol. 688, no. 1, pp. 49–53.PubMedCrossRef Alonso-Lomillo, M.A., Domínguez-Renedo, O., del Torno-deRomán, L., and Arcos-Martínez, M.J., Horseradish peroxidase-screen printed biosensors for determination of Ochratoxin A, Anal. Chim. Acta, 2011, vol. 688, no. 1, pp. 49–53.PubMedCrossRef
2.
go back to reference Amine, A., Arduini, F., Moscone, D., and Palleschi, G., Recent advances in biosensors based on enzyme inhibition, Biosens. Bioelectron., 2016, vol. 76, pp. 180–194.PubMedCrossRef Amine, A., Arduini, F., Moscone, D., and Palleschi, G., Recent advances in biosensors based on enzyme inhibition, Biosens. Bioelectron., 2016, vol. 76, pp. 180–194.PubMedCrossRef
3.
go back to reference Andreescu, S., Avramescu, A., Bala, C., Magearu, V., and Marty, J.-L., Detection of organophosphorus insecticides with immobilized acetylcholinesterase—comparative study of two enzyme sensors, Anal. Bioanal. Chem., 2002a, vol. 374, no. 1, pp. 39–45.PubMedCrossRef Andreescu, S., Avramescu, A., Bala, C., Magearu, V., and Marty, J.-L., Detection of organophosphorus insecticides with immobilized acetylcholinesterase—comparative study of two enzyme sensors, Anal. Bioanal. Chem., 2002a, vol. 374, no. 1, pp. 39–45.PubMedCrossRef
4.
go back to reference Andreescu, S., Noguer, T., Magearu, V., and Marty, J.-L., Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents, Talanta, 2002b, vol. 57, no. 1, pp. 169–176.PubMedCrossRef Andreescu, S., Noguer, T., Magearu, V., and Marty, J.-L., Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents, Talanta, 2002b, vol. 57, no. 1, pp. 169–176.PubMedCrossRef
5.
go back to reference Arduini, F. and Amine, A., Biosensors based on enzyme inhibition, Adv. Biochem. Eng. Biotechnol., 2014, vol. 140, pp. 299–326.PubMed Arduini, F. and Amine, A., Biosensors based on enzyme inhibition, Adv. Biochem. Eng. Biotechnol., 2014, vol. 140, pp. 299–326.PubMed
6.
go back to reference Ashrafi, A.M., Sys, M., Sedláčková, E., Farag, A.S., Adam, V., Přibyl, J., and Richtera, L., Application of the enzymatic electrochemical biosensors for monitoring non-competitive inhibition of enzyme activity by heavy metals, Sensors (Basel), 2019, vol. 19, no. 13, artic. no. 2939. Ashrafi, A.M., Sys, M., Sedláčková, E., Farag, A.S., Adam, V., Přibyl, J., and Richtera, L., Application of the enzymatic electrochemical biosensors for monitoring non-competitive inhibition of enzyme activity by heavy metals, Sensors (Basel), 2019, vol. 19, no. 13, artic. no. 2939.
7.
go back to reference Aubert, S.D., Li, Y., and Raushel, F.M., Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase, Biochemistry, 2004, vol. 43, no. 19, pp. 5707–5715.PubMedCrossRef Aubert, S.D., Li, Y., and Raushel, F.M., Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase, Biochemistry, 2004, vol. 43, no. 19, pp. 5707–5715.PubMedCrossRef
8.
go back to reference Bachan Upadhyay, L.S. and Verma, N., Enzyme inhibition based biosensors: A review, Anal. Lett., 2013, vol. 46, no. 2, pp. 225–241.CrossRef Bachan Upadhyay, L.S. and Verma, N., Enzyme inhibition based biosensors: A review, Anal. Lett., 2013, vol. 46, no. 2, pp. 225–241.CrossRef
9.
go back to reference Bacmaga, M., Kucharski, J., and Wyszkowska, J., Microbial and enzymatic activity of soil contaminated with azoxystrobin, Environ. Monit. Assess., 2015, vol. 187, artic. no. 615. Bacmaga, M., Kucharski, J., and Wyszkowska, J., Microbial and enzymatic activity of soil contaminated with azoxystrobin, Environ. Monit. Assess., 2015, vol. 187, artic. no. 615.
10.
go back to reference Bao, J., Hou, C., Chen, M., Li, J., Huo, D., Yang, M., Luo, X., and Lei, Y., Plant esterase-chitosan/gold nanoparticles–graphene nanosheet composite-based biosensor for the ultrasensitive detection of organophosphate pesticides, J. Agric. Food Chem., 2015, vol. 63, no. 47, pp. 10319–10326.PubMedCrossRef Bao, J., Hou, C., Chen, M., Li, J., Huo, D., Yang, M., Luo, X., and Lei, Y., Plant esterase-chitosan/gold nanoparticles–graphene nanosheet composite-based biosensor for the ultrasensitive detection of organophosphate pesticides, J. Agric. Food Chem., 2015, vol. 63, no. 47, pp. 10319–10326.PubMedCrossRef
11.
go back to reference Bartkowiak, A., Lemanowicz, J., and Breza-Boruta, B., Evaluation of the content of Zn, Cu, Ni and Pb as well as the enzymatic activity of forest soils exposed to the effect of road traffic pollution, Environ. Sci. Pollut. Res., 2017, vol. 24, pp. 23893–23902.CrossRef Bartkowiak, A., Lemanowicz, J., and Breza-Boruta, B., Evaluation of the content of Zn, Cu, Ni and Pb as well as the enzymatic activity of forest soils exposed to the effect of road traffic pollution, Environ. Sci. Pollut. Res., 2017, vol. 24, pp. 23893–23902.CrossRef
12.
go back to reference Blaise, C. and Ferard, J.-F., Small-Scale Freshwater Toxicity Investigations, Dordrecht: Springer, 2005. Blaise, C. and Ferard, J.-F., Small-Scale Freshwater Toxicity Investigations, Dordrecht: Springer, 2005.
13.
go back to reference Bosch-Orea, C., Farré, M., and Barceló, D., Biosensors and bioassays for environmental monitoring, Compr. Anal. Chem., 2017, vol. 77, pp. 337–383.CrossRef Bosch-Orea, C., Farré, M., and Barceló, D., Biosensors and bioassays for environmental monitoring, Compr. Anal. Chem., 2017, vol. 77, pp. 337–383.CrossRef
14.
go back to reference Bucur, B., Munteanu, F.-D., Marty, J.-L., and Vasilescu, A., Advances in enzyme-based biosensors for pesticide detection, Biosensors (Basel), 2018, vol. 8, no. 2, artic. no. 27. Bucur, B., Munteanu, F.-D., Marty, J.-L., and Vasilescu, A., Advances in enzyme-based biosensors for pesticide detection, Biosensors (Basel), 2018, vol. 8, no. 2, artic. no. 27.
15.
go back to reference Campaña, A.L., Florez, S.L., Noguera, M.J., Fuentes, O.P., Puentes, P.R., Cruz, J.C., and Osma, J.F., Enzyme-based electrochemical biosensors for microfluidic platforms to detect pharmaceutical residues in wastewater, Biosensors (Basel), 2019, vol. 9, no. 1, artic. no. 41. Campaña, A.L., Florez, S.L., Noguera, M.J., Fuentes, O.P., Puentes, P.R., Cruz, J.C., and Osma, J.F., Enzyme-based electrochemical biosensors for microfluidic platforms to detect pharmaceutical residues in wastewater, Biosensors (Basel), 2019, vol. 9, no. 1, artic. no. 41.
16.
go back to reference Capoferri, D., Della Pelle, F., Del Carlo, M., and Compagnone, D., Affinity sensing strategies for the detection of pesticides in food, Foods, 2018, vol. 7, no. 9, artic. no. 148. Capoferri, D., Della Pelle, F., Del Carlo, M., and Compagnone, D., Affinity sensing strategies for the detection of pesticides in food, Foods, 2018, vol. 7, no. 9, artic. no. 148.
17.
go back to reference Carr, R.L., Chambers, H.W., Chambers, J.E., Oppenheimer, S.F., and Richardson, J.R., Modelling the interaction of mixtures of organophosphorus insecticides with cholinesterase, Electron. J. Diff. Eq., Conf., 2003, vol. 10, pp. 89–99. Carr, R.L., Chambers, H.W., Chambers, J.E., Oppenheimer, S.F., and Richardson, J.R., Modelling the interaction of mixtures of organophosphorus insecticides with cholinesterase, Electron. J. Diff. Eq., Conf., 2003, vol. 10, pp. 89–99.
18.
go back to reference Caruso, G., De Pasquale, F., Mita, D.G., and Micale, V., Digestive enzymatic patterns as possible biomarkers of endocrine disruption in the red mullet (Mullus barbatus): A preliminary investigation, Mar. Pollut. Bull., 2016, vol. 105, no. 1, pp. 37–42.PubMedCrossRef Caruso, G., De Pasquale, F., Mita, D.G., and Micale, V., Digestive enzymatic patterns as possible biomarkers of endocrine disruption in the red mullet (Mullus barbatus): A preliminary investigation, Mar. Pollut. Bull., 2016, vol. 105, no. 1, pp. 37–42.PubMedCrossRef
19.
go back to reference Chauhan, N. and Pundir, C.S., An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides, Anal. Chim. Acta, 2011, vol. 701, no. 1, pp. 66–74.PubMedCrossRef Chauhan, N. and Pundir, C.S., An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides, Anal. Chim. Acta, 2011, vol. 701, no. 1, pp. 66–74.PubMedCrossRef
20.
go back to reference Chen, H., Mousty, C., Chen, L., and Cosnier, S., A new approach for nitrite determination based on a HRP/catalase biosensor, Mater. Sci. Eng. C, 2008, vol. 28, nos. 5–6, pp. 726–730.CrossRef Chen, H., Mousty, C., Chen, L., and Cosnier, S., A new approach for nitrite determination based on a HRP/catalase biosensor, Mater. Sci. Eng. C, 2008, vol. 28, nos. 5–6, pp. 726–730.CrossRef
21.
go back to reference Chrouda, A., Zinoubi, K., Soltane, R., Alzahrani, N., Osman, G., Al-Ghamdi, Y.O., Qari, S., Al Mahri, A., Algethami, F.K., Majdoub, H., and Jaffrezic Renault, N., An acetylcholinesterase inhibition-based biosensor for aflatoxin B1 detection using sodium alginate as an immobilization matrix, Toxins (Basel), 2020, vol. 12, no. 3, artic. no. 173. Chrouda, A., Zinoubi, K., Soltane, R., Alzahrani, N., Osman, G., Al-Ghamdi, Y.O., Qari, S., Al Mahri, A., Algethami, F.K., Majdoub, H., and Jaffrezic Renault, N., An acetylcholinesterase inhibition-based biosensor for aflatoxin B1 detection using sodium alginate as an immobilization matrix, Toxins (Basel), 2020, vol. 12, no. 3, artic. no. 173.
22.
go back to reference Cosnier, S., Mousty, C., Cui, X., Yang, X., and Dong, S., Specific determination of As(V) by an acid phosphatase–polyphenol oxidase biosensor, Anal. Chem., 2006, vol. 78, no. 14, pp. 4985–4989.PubMedCrossRef Cosnier, S., Mousty, C., Cui, X., Yang, X., and Dong, S., Specific determination of As(V) by an acid phosphatase–polyphenol oxidase biosensor, Anal. Chem., 2006, vol. 78, no. 14, pp. 4985–4989.PubMedCrossRef
23.
go back to reference Crane, M. and Maltby, L., The lethal and sublethal responses of Gammarus pulex to stress: Sensitivity and sources of variation in an in situ bioassay, Environ. Toxicol. Chem., 1991, vol. 10, no. 10, pp. 1331–1339. Crane, M. and Maltby, L., The lethal and sublethal responses of Gammarus pulex to stress: Sensitivity and sources of variation in an in situ bioassay, Environ. Toxicol. Chem., 1991, vol. 10, no. 10, pp. 1331–1339.
24.
go back to reference Dang, Z., van der Ven, L.T.M., and Kienhuis, A.S., Fish embryo toxicity test, threshold approach, and moribund as approaches to implement 3R principles to the acute fish toxicity test, Chemosphere, 2017, vol. 186, pp. 677–685.PubMedCrossRef Dang, Z., van der Ven, L.T.M., and Kienhuis, A.S., Fish embryo toxicity test, threshold approach, and moribund as approaches to implement 3R principles to the acute fish toxicity test, Chemosphere, 2017, vol. 186, pp. 677–685.PubMedCrossRef
25.
go back to reference Denisov, I., Lukyanenko, K., Yakimov, A., Kukhtevich, I., Esimbekova, E., and Belobrov, P., Disposable luciferase-based microfluidic chip for rapid assay of water pollution, Luminescence, 2018, vol. 33, no. 6, pp. 1054–1061.PubMedCrossRef Denisov, I., Lukyanenko, K., Yakimov, A., Kukhtevich, I., Esimbekova, E., and Belobrov, P., Disposable luciferase-based microfluidic chip for rapid assay of water pollution, Luminescence, 2018, vol. 33, no. 6, pp. 1054–1061.PubMedCrossRef
26.
go back to reference Dock, E., Christensen, J., Olsson, M., Tonning, E., Ruzgas, T., and Emneus, J., Multivariate data analysis of dynamic amperometric biosensor responses from binary analyte mixtures – application of sensitivity correction algorithms, Talanta, 2005, vol. 65, no. 2, pp. 298–305.PubMedCrossRef Dock, E., Christensen, J., Olsson, M., Tonning, E., Ruzgas, T., and Emneus, J., Multivariate data analysis of dynamic amperometric biosensor responses from binary analyte mixtures – application of sensitivity correction algorithms, Talanta, 2005, vol. 65, no. 2, pp. 298–305.PubMedCrossRef
27.
go back to reference Dopp, E., Pannekens, H., Itzel, F., and Tuerk, J., Effect-based methods in combination with state-of-the-art chemical analysis for assessment of water quality as integrated approach, Int. J. Hyg. Environ. Health, 2019, vol. 222, no. 4, pp. 607–614.PubMedCrossRef Dopp, E., Pannekens, H., Itzel, F., and Tuerk, J., Effect-based methods in combination with state-of-the-art chemical analysis for assessment of water quality as integrated approach, Int. J. Hyg. Environ. Health, 2019, vol. 222, no. 4, pp. 607–614.PubMedCrossRef
28.
go back to reference Dubovskaya, O.P., Gladyshev, M.I., Esimbekova, E.N., Morozova, I.I., Gol’d, Z.G., and Makhutova, O.N., Study of possible relation between seasonal dynamics of zooplankton nonconsumptive mortality and water toxicity in a pond, Biol. Vnutr. Vod., 2002, no. 3, pp. 39–43. Dubovskaya, O.P., Gladyshev, M.I., Esimbekova, E.N., Morozova, I.I., Gol’d, Z.G., and Makhutova, O.N., Study of possible relation between seasonal dynamics of zooplankton nonconsumptive mortality and water toxicity in a pond, Biol. Vnutr. Vod., 2002, no. 3, pp. 39–43.
29.
go back to reference Edori, O.S., Festus, C., and Edori, E.S., Comparative effects of petrol and diesel on enzyme activity in Tympanotonus fuscatus after sublethal exposure, Pak. J. Biol. Sci., 2014, vol. 17, no. 4, pp. 545–549.PubMedCrossRef Edori, O.S., Festus, C., and Edori, E.S., Comparative effects of petrol and diesel on enzyme activity in Tympanotonus fuscatus after sublethal exposure, Pak. J. Biol. Sci., 2014, vol. 17, no. 4, pp. 545–549.PubMedCrossRef
30.
go back to reference Edwards, C., Duanghathaipornsuk, S., Goltz, M., Kanel, S., and Kim, D.-S., Peptide nanotube encapsulated enzyme biosensor for vapor phase detection of malathion, an organophosphorus compound, Sensors (Basel), 2019, vol. 19, no. 18, artic. no. 3856. Edwards, C., Duanghathaipornsuk, S., Goltz, M., Kanel, S., and Kim, D.-S., Peptide nanotube encapsulated enzyme biosensor for vapor phase detection of malathion, an organophosphorus compound, Sensors (Basel), 2019, vol. 19, no. 18, artic. no. 3856.
31.
go back to reference Ekelund, N.G.A. and Häder, D.-P., Environmental monitoring using bioassays, in Bioassays: Advanced Methods and Applications, Hader, D. and Erzinger, G., Eds., Amsterdam: Elsevier, 2018, pp. 419–437. Ekelund, N.G.A. and Häder, D.-P., Environmental monitoring using bioassays, in Bioassays: Advanced Methods and Applications, Hader, D. and Erzinger, G., Eds., Amsterdam: Elsevier, 2018, pp. 419–437.
32.
go back to reference Elsebai, B., Ghica, M.E., Abbas, M.N., and Brett, C.M.A., Catalase based hydrogen peroxide biosensor for mercury determination by inhibition measurements, J. Hazard. Mater., 2017, vol. 340, pp. 344–350.PubMedCrossRef Elsebai, B., Ghica, M.E., Abbas, M.N., and Brett, C.M.A., Catalase based hydrogen peroxide biosensor for mercury determination by inhibition measurements, J. Hazard. Mater., 2017, vol. 340, pp. 344–350.PubMedCrossRef
33.
go back to reference Esimbekova, E.N., Kondik, A.M., and Kratasyuk, V.A., Bioluminescent enzymatic rapid assay of water integral toxicity, Environ. Monit. Assess., 2013, vol. 185, no. 7, pp. 5909–5916.PubMedCrossRef Esimbekova, E.N., Kondik, A.M., and Kratasyuk, V.A., Bioluminescent enzymatic rapid assay of water integral toxicity, Environ. Monit. Assess., 2013, vol. 185, no. 7, pp. 5909–5916.PubMedCrossRef
34.
go back to reference Esimbekova, E., Kratasyuk, V., and Shimomura, O., Application of enzyme bioluminescence in ecology, in Bioluminescence: Fundamentals and Applications in Biotechnology, Thouand, G. and Marks, R., Eds., Berlin: Springer, 2014, pp. 67–109. Esimbekova, E., Kratasyuk, V., and Shimomura, O., Application of enzyme bioluminescence in ecology, in Bioluminescence: Fundamentals and Applications in Biotechnology, Thouand, G. and Marks, R., Eds., Berlin: Springer, 2014, pp. 67–109.
35.
go back to reference Esimbekova, E.N., Lonshakova-Mukina, V.I., Bezrukikh, A.E., and Kratasyuk, V.A., Design of multicomponent reagents for enzymatic assays, Dokl. Biochem. Biophys., 2015, vol. 461, pp. 102–105.PubMedCrossRef Esimbekova, E.N., Lonshakova-Mukina, V.I., Bezrukikh, A.E., and Kratasyuk, V.A., Design of multicomponent reagents for enzymatic assays, Dokl. Biochem. Biophys., 2015, vol. 461, pp. 102–105.PubMedCrossRef
36.
go back to reference Esimbekova, E.N., Nemtseva, E.V., Bezrukikh, A.E., Jukova, G.V., Lisitsa, A.E., Lonshakova-Mukina, V.I., Rimatskaya, N.V., Sutormin, O.S., and Kratasyuk, V.A., Bioluminescent enzyme inhibition-based assay to predict the potential toxicity of carbon nanomaterials, Toxicol. In Vitro, 2017a, vol. 45, part 1, pp. 128–133.PubMedCrossRef Esimbekova, E.N., Nemtseva, E.V., Bezrukikh, A.E., Jukova, G.V., Lisitsa, A.E., Lonshakova-Mukina, V.I., Rimatskaya, N.V., Sutormin, O.S., and Kratasyuk, V.A., Bioluminescent enzyme inhibition-based assay to predict the potential toxicity of carbon nanomaterials, Toxicol. In Vitro, 2017a, vol. 45, part 1, pp. 128–133.PubMedCrossRef
37.
go back to reference Esimbekova, E.N., Asanova, A.A., Deeva, A.A., and Kratasyuk, V.A., Inhibition effect of food preservatives on endoproteinases, Food Chem., 2017b, vol. 235, pp. 294–297.PubMedCrossRef Esimbekova, E.N., Asanova, A.A., Deeva, A.A., and Kratasyuk, V.A., Inhibition effect of food preservatives on endoproteinases, Food Chem., 2017b, vol. 235, pp. 294–297.PubMedCrossRef
38.
go back to reference Esimbekova, E.N., Nemtseva, E.V., Kirillova, M.A., Asanova, A.A., and Kratasyuk, V.A., Bioluminescent assay for toxicological assessment of nanomaterials, Dokl. Biochem. Biophys., 2017c, vol. 472, pp. 60–63.PubMedCrossRef Esimbekova, E.N., Nemtseva, E.V., Kirillova, M.A., Asanova, A.A., and Kratasyuk, V.A., Bioluminescent assay for toxicological assessment of nanomaterials, Dokl. Biochem. Biophys., 2017c, vol. 472, pp. 60–63.PubMedCrossRef
39.
go back to reference Esimbekova, E.N., Kratasyuk, V.A., Nemtseva, E.V., Kudryasheva, N.S., Medvedeva, S.E., and Kirillova, M.A., Biolyuminestsentnye biotesty: Sovremennoe sostoyanie i perspektivy (Bioluminescent Bioassays: Current State and Prospects), Kratasyuk, V.A., Ed., Krasnoyarsk: Sib. Fed. Univ., 2018. Esimbekova, E.N., Kratasyuk, V.A., Nemtseva, E.V., Kudryasheva, N.S., Medvedeva, S.E., and Kirillova, M.A., Biolyuminestsentnye biotesty: Sovremennoe sostoyanie i perspektivy (Bioluminescent Bioassays: Current State and Prospects), Kratasyuk, V.A., Ed., Krasnoyarsk: Sib. Fed. Univ., 2018.
40.
go back to reference Everett, W.R. and Rechnitz, G.A., Mediated bioelectrocatalytic determination of organophosphorus pesticides with a tyrosinase-based oxygen biosensor, Anal. Chem., 1998, vol. 70, no. 4, pp. 807–810.CrossRef Everett, W.R. and Rechnitz, G.A., Mediated bioelectrocatalytic determination of organophosphorus pesticides with a tyrosinase-based oxygen biosensor, Anal. Chem., 1998, vol. 70, no. 4, pp. 807–810.CrossRef
41.
go back to reference Evtugyn, G.A., Budnikov, H.C., and Nikolskaya, E.B., Sensitivity and selectivity of electrochemical enzyme sensors for inhibitor determination, Talanta, 1998, vol. 46, no. 4, pp. 465–484.PubMedCrossRef Evtugyn, G.A., Budnikov, H.C., and Nikolskaya, E.B., Sensitivity and selectivity of electrochemical enzyme sensors for inhibitor determination, Talanta, 1998, vol. 46, no. 4, pp. 465–484.PubMedCrossRef
42.
go back to reference Fennouh, S., Casimiri, V., and Burstein, C., Increased paraoxon detection with solvents using acetylcholinesterase inactivation measured with a choline oxidase biosensor, Biosens. Bioelectron., 1997, vol. 12, no. 2, pp. 97–104.CrossRef Fennouh, S., Casimiri, V., and Burstein, C., Increased paraoxon detection with solvents using acetylcholinesterase inactivation measured with a choline oxidase biosensor, Biosens. Bioelectron., 1997, vol. 12, no. 2, pp. 97–104.CrossRef
43.
go back to reference Feron, V.J. and Groten, J.P., Toxicological evaluation of chemical mixtures, Food Chem. Toxicol., 2002, vol. 40, no. 6, pp. 825–839.PubMedCrossRef Feron, V.J. and Groten, J.P., Toxicological evaluation of chemical mixtures, Food Chem. Toxicol., 2002, vol. 40, no. 6, pp. 825–839.PubMedCrossRef
44.
go back to reference Greer, J.B., Magnuson, J.T., Hester, K., Giroux, M., Pope, C., Anderson, T., Liu, J., Dang, V., Denslow, N.D., and Schlenk, D., Effects of chlorpyrifos on cholinesterase and serine lipase activities and lipid metabolism in brains of rainbow trout (Oncorhynchus mykiss), Toxicol. Sci., 2019, vol. 172, no. 1, pp. 146–154.PubMedCentralCrossRef Greer, J.B., Magnuson, J.T., Hester, K., Giroux, M., Pope, C., Anderson, T., Liu, J., Dang, V., Denslow, N.D., and Schlenk, D., Effects of chlorpyrifos on cholinesterase and serine lipase activities and lipid metabolism in brains of rainbow trout (Oncorhynchus mykiss), Toxicol. Sci., 2019, vol. 172, no. 1, pp. 146–154.PubMedCentralCrossRef
45.
go back to reference Gul, I., Sheeraz Ahmad, M., Saqlan Naqvi, S.M., Hussain, A., Wali, R., Ahmad Farooqi, A., and Ahmed, I., Polyphenol oxidase (PPO) based biosensors for detection of phenolic compounds: A review, J. Appl. Biol. Biotechnol., 2017, vol. 5, no. 3, pp. 72–85.CrossRef Gul, I., Sheeraz Ahmad, M., Saqlan Naqvi, S.M., Hussain, A., Wali, R., Ahmad Farooqi, A., and Ahmed, I., Polyphenol oxidase (PPO) based biosensors for detection of phenolic compounds: A review, J. Appl. Biol. Biotechnol., 2017, vol. 5, no. 3, pp. 72–85.CrossRef
46.
go back to reference Hani, Y.M.I., Turies, C., Palluel, O., Delahaut, L., Gaillet, V., Bado-nilles, A., Porcher, J.-M., Geffard, A., and Dedourge-geffard, O., Effects of chronic exposure to cadmium and temperature, alone or combined, on the threespine stickleback (Gasterosteus aculeatus): Interest of digestive enzymes as biomarkers, Aquat. Toxicol., 2018, vol. 199, pp. 252–262.PubMedCrossRef Hani, Y.M.I., Turies, C., Palluel, O., Delahaut, L., Gaillet, V., Bado-nilles, A., Porcher, J.-M., Geffard, A., and Dedourge-geffard, O., Effects of chronic exposure to cadmium and temperature, alone or combined, on the threespine stickleback (Gasterosteus aculeatus): Interest of digestive enzymes as biomarkers, Aquat. Toxicol., 2018, vol. 199, pp. 252–262.PubMedCrossRef
47.
go back to reference Hossain, S.M.Z. and Brennan, J.D., β-galactosidase-based colorimetric paper sensor for determination of heavy metals, Anal. Chem., 2011, vol. 83, no. 22, pp. 8772–8778.PubMedCrossRef Hossain, S.M.Z. and Brennan, J.D., β-galactosidase-based colorimetric paper sensor for determination of heavy metals, Anal. Chem., 2011, vol. 83, no. 22, pp. 8772–8778.PubMedCrossRef
48.
go back to reference Hussain, Ch.M. and Keçili, R., Environmental pollution and environmental analysis, in Modern Environmental Analysis Techniques for Pollutants, Amsterdam: Elsevier, 2020a, pp. 1–36. Hussain, Ch.M. and Keçili, R., Environmental pollution and environmental analysis, in Modern Environmental Analysis Techniques for Pollutants, Amsterdam: Elsevier, 2020a, pp. 1–36.
49.
go back to reference Hussain, Ch.M. and Keçili, R., Future of environmental analysis, in Modern Environmental Analysis Techniques for Pollutants, Amsterdam: Elsevier, 2020b, pp. 381–398. Hussain, Ch.M. and Keçili, R., Future of environmental analysis, in Modern Environmental Analysis Techniques for Pollutants, Amsterdam: Elsevier, 2020b, pp. 381–398.
50.
go back to reference Istomina, A., Chelomin, V., Kukla, S., Zvyagintsev, A., Karpenko, A., Slinko, E., Dovzhenko, N., Slobodskova, V., and Kolosova, L., Copper effect on the biomarker state of the Mizuhopecten yessoensis tissues in the prespawning period, Environ. Toxicol. Pharmacol., 2019, vol. 70, artic. no. 103189. Istomina, A., Chelomin, V., Kukla, S., Zvyagintsev, A., Karpenko, A., Slinko, E., Dovzhenko, N., Slobodskova, V., and Kolosova, L., Copper effect on the biomarker state of the Mizuhopecten yessoensis tissues in the prespawning period, Environ. Toxicol. Pharmacol., 2019, vol. 70, artic. no. 103189.
51.
go back to reference Jain, M., Yadav, P., Joshi, A., and Kodgire, P., Advances in detection of hazardous organophosphorus compounds using organophosphorus hydrolase based biosensors, Crit. Rev. Toxicol., 2019, vol. 49, no. 5, pp. 387–410.PubMedCrossRef Jain, M., Yadav, P., Joshi, A., and Kodgire, P., Advances in detection of hazardous organophosphorus compounds using organophosphorus hydrolase based biosensors, Crit. Rev. Toxicol., 2019, vol. 49, no. 5, pp. 387–410.PubMedCrossRef
52.
go back to reference Jaworska, H. and Lemanowicz, J., Heavy metal contents and enzymatic activity in soils exposed to the impact of road traffic, Sci. Rep., 2019, vol. 9, artic. no. 19981. Jaworska, H. and Lemanowicz, J., Heavy metal contents and enzymatic activity in soils exposed to the impact of road traffic, Sci. Rep., 2019, vol. 9, artic. no. 19981.
53.
go back to reference Jemec, A., Drobne, D., Tisler, T., and Sepcić, K., Biochemical biomarkers in environmental studies – lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species, Environ. Sci. Pollut. Res. Int, 2010, vol. 17, no. 3, pp. 571–581.PubMedCrossRef Jemec, A., Drobne, D., Tisler, T., and Sepcić, K., Biochemical biomarkers in environmental studies – lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species, Environ. Sci. Pollut. Res. Int, 2010, vol. 17, no. 3, pp. 571–581.PubMedCrossRef
54.
go back to reference Jia, L., Zhou, Y., Wu, K., Feng, Q., Wang, C., and He, P., Acetylcholinesterase modified AuNPs-MoS2-rGO/PI flexible film biosensor: Towards efficient fabrication and application in paraoxon detection, Bioelectrochemistry, 2020, artic. no. 107392. Jia, L., Zhou, Y., Wu, K., Feng, Q., Wang, C., and He, P., Acetylcholinesterase modified AuNPs-MoS2-rGO/PI flexible film biosensor: Towards efficient fabrication and application in paraoxon detection, Bioelectrochemistry, 2020, artic. no. 107392.
55.
go back to reference Kalyabina, V.P., Esimbekova, E.N., Torgashina, I.G., Kopylova, K.V., and Kratasyuk, V.A., Principles for construction of bioluminescent enzyme biotests for analysis of complex media, Dokl. Biochem. Biophys., 2019, vol. 485, pp. 107–110.PubMedCrossRef Kalyabina, V.P., Esimbekova, E.N., Torgashina, I.G., Kopylova, K.V., and Kratasyuk, V.A., Principles for construction of bioluminescent enzyme biotests for analysis of complex media, Dokl. Biochem. Biophys., 2019, vol. 485, pp. 107–110.PubMedCrossRef
56.
go back to reference Karousos, N.G., Aouabdi, S., Way, A.S., and Reddy, S.M., Quartz crystal microbalance determination of organophosphorus and carbamate pesticides, Anal. Chim. Acta, 2002, vol. 469, no. 2, pp. 189–196.CrossRef Karousos, N.G., Aouabdi, S., Way, A.S., and Reddy, S.M., Quartz crystal microbalance determination of organophosphorus and carbamate pesticides, Anal. Chim. Acta, 2002, vol. 469, no. 2, pp. 189–196.CrossRef
57.
go back to reference Khare, A., Chhawani, N., and Kumari, K., Glutathione reductase and catalase as potential biomarkers for synergistic intoxication of pesticides in fish, Biomarkers, 2019, vol. 24, no. 7, pp. 666–676.PubMedCrossRef Khare, A., Chhawani, N., and Kumari, K., Glutathione reductase and catalase as potential biomarkers for synergistic intoxication of pesticides in fish, Biomarkers, 2019, vol. 24, no. 7, pp. 666–676.PubMedCrossRef
58.
go back to reference Kolosova, E.M., Sutormin, O.S., Esimbekova, E.N., Lonshakova-Mukina, V.I., and Kratasyuk, V.A., Set of enzymatic bioassays for assessment of soil contamination, Dokl. Biol. Sci., 2019, vol. 489, pp. 165–168.PubMedCrossRef Kolosova, E.M., Sutormin, O.S., Esimbekova, E.N., Lonshakova-Mukina, V.I., and Kratasyuk, V.A., Set of enzymatic bioassays for assessment of soil contamination, Dokl. Biol. Sci., 2019, vol. 489, pp. 165–168.PubMedCrossRef
59.
go back to reference Krasovskii, G.N., Alekseeva, T.V., Egorova, N.A., and Zholdakova, Z.I., Biotesting in hygienic assessment of water quality, Gig. Sanit., 1991, no. 9, pp. 13–16. Krasovskii, G.N., Alekseeva, T.V., Egorova, N.A., and Zholdakova, Z.I., Biotesting in hygienic assessment of water quality, Gig. Sanit., 1991, no. 9, pp. 13–16.
60.
go back to reference Kratasyuk, V.A., Principle of luciferase biotesting, Proceeding of the First Int. School “Biological luminescence,” Singapore: World Sci. Publ. Co., 1990, pp. 550–558. Kratasyuk, V.A., Principle of luciferase biotesting, Proceeding of the First Int. School “Biological luminescence,” Singapore: World Sci. Publ. Co., 1990, pp. 550–558.
61.
go back to reference Kratasyuk, V. and Esimbekova, E., Applications of luminous bacteria enzymes in toxicology, Comb. Chem. High Throughput Screening, 2015, vol. 18, no. 10, pp. 952–959.CrossRef Kratasyuk, V. and Esimbekova, E., Applications of luminous bacteria enzymes in toxicology, Comb. Chem. High Throughput Screening, 2015, vol. 18, no. 10, pp. 952–959.CrossRef
62.
go back to reference Kratasyuk, V.A., Kuznetsov, A.M., Rodicheva, E.K., Egorova, O.I., Abakumova, V.V., Gribovskaya, I.V., and Kalacheva, G.S., Problems and prospects of bioluminescence assays in ecological monitoring, Sib. J. Ecol., 1996, vol. 5, pp. 397–403. Kratasyuk, V.A., Kuznetsov, A.M., Rodicheva, E.K., Egorova, O.I., Abakumova, V.V., Gribovskaya, I.V., and Kalacheva, G.S., Problems and prospects of bioluminescence assays in ecological monitoring, Sib. J. Ecol., 1996, vol. 5, pp. 397–403.
63.
go back to reference Kratasyuk, V.A., Vetrova, E.V., and Kudryasheva, N.S., Bioluminescent water quality monitoring of salt lake Shira, Luminescence, 1999, vol. 14, no. 4, pp. 193–195.PubMedCrossRef Kratasyuk, V.A., Vetrova, E.V., and Kudryasheva, N.S., Bioluminescent water quality monitoring of salt lake Shira, Luminescence, 1999, vol. 14, no. 4, pp. 193–195.PubMedCrossRef
64.
go back to reference Kratasyuk, V.A., Esimbekova, E.N., Gladyshev, M.I., Khromichek, E.B., Kuznetsov, A.M., and Ivanova, E.A., The use of bioluminescent biotests for study of natural and laboratory aquatic ecosystems, Chemosphere, 2001, vol. 42, no. 8, pp. 909–915.PubMedCrossRef Kratasyuk, V.A., Esimbekova, E.N., Gladyshev, M.I., Khromichek, E.B., Kuznetsov, A.M., and Ivanova, E.A., The use of bioluminescent biotests for study of natural and laboratory aquatic ecosystems, Chemosphere, 2001, vol. 42, no. 8, pp. 909–915.PubMedCrossRef
65.
go back to reference Kudryasheva, N.S. and Kovel, E.S., Monitoring of low-intensity exposures via luminescent bioassays of different complexity: Cells, enzyme reactions and fluorescent proteins, Int. J. Mol. Sci., 2019, vol. 20, no. 18, artic. no. 4451. Kudryasheva, N.S. and Kovel, E.S., Monitoring of low-intensity exposures via luminescent bioassays of different complexity: Cells, enzyme reactions and fluorescent proteins, Int. J. Mol. Sci., 2019, vol. 20, no. 18, artic. no. 4451.
66.
go back to reference Kudryasheva, N.S. and Tarasova, A.S., Pollutant toxicity and detoxification by humic substances: Mechanisms and quantitative assessment via luminescent biomonitoring, Environ. Sci. Pollut. Res. Int., 2015, vol. 22, no. 1, pp. 155–167.PubMedCrossRef Kudryasheva, N.S. and Tarasova, A.S., Pollutant toxicity and detoxification by humic substances: Mechanisms and quantitative assessment via luminescent biomonitoring, Environ. Sci. Pollut. Res. Int., 2015, vol. 22, no. 1, pp. 155–167.PubMedCrossRef
67.
go back to reference Kudryasheva, N.S., Kudinova, I.Y., Esimbekova, E.N., Kratasyuk, V.A., and Stom, D.I., The influence of quinones and phenols on the triple NAD(H)-dependent enzyme systems, Chemosphere, 1999, vol. 38, no. 1, pp. 751–758.PubMedCrossRef Kudryasheva, N.S., Kudinova, I.Y., Esimbekova, E.N., Kratasyuk, V.A., and Stom, D.I., The influence of quinones and phenols on the triple NAD(H)-dependent enzyme systems, Chemosphere, 1999, vol. 38, no. 1, pp. 751–758.PubMedCrossRef
68.
go back to reference Law, K.A. and Higson, S.P.J., Sonochemically fabricated acetylcholinesterase micro-electrode arrays within a flow injection analyser for the determination of organophosphate pesticides, Biosens. Bioelectron., 2005, vol. 20, no. 10, pp. 1914–1924.PubMedCrossRef Law, K.A. and Higson, S.P.J., Sonochemically fabricated acetylcholinesterase micro-electrode arrays within a flow injection analyser for the determination of organophosphate pesticides, Biosens. Bioelectron., 2005, vol. 20, no. 10, pp. 1914–1924.PubMedCrossRef
69.
go back to reference Li, Z.H., Zlabek, V., Grabic, R.LiP., Machova, J., Velisek, J., and Randak, T., Effects of exposure to sublethal propiconazole on intestine-related biochemical responses in rainbow trout, Oncorhynchus mykiss, Chem. Biol. Interact., 2010, vol. 185, no. 3, pp. 241–246.PubMedCrossRef Li, Z.H., Zlabek, V., Grabic, R.LiP., Machova, J., Velisek, J., and Randak, T., Effects of exposure to sublethal propiconazole on intestine-related biochemical responses in rainbow trout, Oncorhynchus mykiss, Chem. Biol. Interact., 2010, vol. 185, no. 3, pp. 241–246.PubMedCrossRef
70.
go back to reference Li, Z.H., Li, P., and Shi, Z.-C., Molecular responses in digestive tract of juvenile common carp after chronic exposure to sublethal tributyltin, Ecotoxicol. Environ. Saf., 2014, vol. 109, pp. 10–14.PubMedCrossRef Li, Z.H., Li, P., and Shi, Z.-C., Molecular responses in digestive tract of juvenile common carp after chronic exposure to sublethal tributyltin, Ecotoxicol. Environ. Saf., 2014, vol. 109, pp. 10–14.PubMedCrossRef
71.
go back to reference Lillicrap, A., Belanger, S., Burden, N., Du Pasquier, D., Embry, M. R., Halder, M., Lampi, M. A., Lee, L., Norberg-King, T., Rattner, B. A., Schirmer, K., and Thomas, P., Alternative approaches to vertebrate ecotoxicity tests in the 21st century: A review of developments over the last 2 decades and current status, Environ. Toxicol. Chem., 2016, vol. 35, no. 11, pp. 2637–2646.PubMedCrossRef Lillicrap, A., Belanger, S., Burden, N., Du Pasquier, D., Embry, M. R., Halder, M., Lampi, M. A., Lee, L., Norberg-King, T., Rattner, B. A., Schirmer, K., and Thomas, P., Alternative approaches to vertebrate ecotoxicity tests in the 21st century: A review of developments over the last 2 decades and current status, Environ. Toxicol. Chem., 2016, vol. 35, no. 11, pp. 2637–2646.PubMedCrossRef
72.
go back to reference Lima, L.B.D., de Morais, P.B., de Andrade, R.L.T., Mattos, L.V., and Moron, S.E., Use of biomarkers to evaluate the ecological risk of xenobiotics associated with agriculture, Environ. Pollut., 2018, vol. 237, pp. 611–624.PubMedCrossRef Lima, L.B.D., de Morais, P.B., de Andrade, R.L.T., Mattos, L.V., and Moron, S.E., Use of biomarkers to evaluate the ecological risk of xenobiotics associated with agriculture, Environ. Pollut., 2018, vol. 237, pp. 611–624.PubMedCrossRef
73.
go back to reference Lonshakova-Mukina, V., Esimbekova, E., and Kratasyuk, V., Impact of enzyme stabilizers on the characteristics of biomodules for bioluminescent biosensors, Sens. Actuators, B, 2015, vol. 213, pp. 244–247.CrossRef Lonshakova-Mukina, V., Esimbekova, E., and Kratasyuk, V., Impact of enzyme stabilizers on the characteristics of biomodules for bioluminescent biosensors, Sens. Actuators, B, 2015, vol. 213, pp. 244–247.CrossRef
74.
go back to reference Lopes, R.M., Filho, M.V.S., de Salles, J.B., Bastos, V.L.F.C., and Bastos, J.C., Cholinesterase activity of muscle tissue from freshwater fishes: Characterization and sensitivity analysis to the organophosphate methyl-paraoxon, Environ. Toxicol. Chem., 2014, vol. 33, no. 6, pp. 1331–1336.PubMedCrossRef Lopes, R.M., Filho, M.V.S., de Salles, J.B., Bastos, V.L.F.C., and Bastos, J.C., Cholinesterase activity of muscle tissue from freshwater fishes: Characterization and sensitivity analysis to the organophosphate methyl-paraoxon, Environ. Toxicol. Chem., 2014, vol. 33, no. 6, pp. 1331–1336.PubMedCrossRef
75.
go back to reference Lukyanenko, K.A., Denisov, I.A., Yakimov, A.S., Esimbekova, E.N., Belousov, K.I., Bukatin, A.S., Kukhtevich, I.V., Sorokin, V.V., Evstrapov, A.A., and Belobrov, P.I., Analytical enzymatic reactions in microfluidic chips, Appl. Biochem. Microbiol., 2017, vol. 53, no. 1, pp. 775–780.CrossRef Lukyanenko, K.A., Denisov, I.A., Yakimov, A.S., Esimbekova, E.N., Belousov, K.I., Bukatin, A.S., Kukhtevich, I.V., Sorokin, V.V., Evstrapov, A.A., and Belobrov, P.I., Analytical enzymatic reactions in microfluidic chips, Appl. Biochem. Microbiol., 2017, vol. 53, no. 1, pp. 775–780.CrossRef
76.
go back to reference Lukyanenko, K.A., Denisov, I.A., Sorokin, V.V., Yakimov, A.S., Esimbekova, E.N., and Belobrov, P.I., Handheld enzymatic luminescent biosensor for rapid detection of heavy metals in water samples, Chemosensors, 2019, vol. 7, no. 1, artic. no. 16. Lukyanenko, K.A., Denisov, I.A., Sorokin, V.V., Yakimov, A.S., Esimbekova, E.N., and Belobrov, P.I., Handheld enzymatic luminescent biosensor for rapid detection of heavy metals in water samples, Chemosensors, 2019, vol. 7, no. 1, artic. no. 16.
77.
go back to reference Luque de Castro, M.D. and Herrera, M.C., Enzyme inhibition-based biosensors and biosensing systems: Questionable analytical devices, Biosens. Bioelectron., 2003, vol. 18, nos. 2–3, pp. 279–294.PubMedCrossRef Luque de Castro, M.D. and Herrera, M.C., Enzyme inhibition-based biosensors and biosensing systems: Questionable analytical devices, Biosens. Bioelectron., 2003, vol. 18, nos. 2–3, pp. 279–294.PubMedCrossRef
78.
go back to reference Lyubenova, M. and Boteva, S., Biotests in ecotoxicology: Current practice and problems, in Toxicology: New Aspects to This Scientific Conundrum, Larramendy, M.L. and Soloneski, S., Eds., Rijeka, Croatia: Intech, 2016, pp. 147–177. Lyubenova, M. and Boteva, S., Biotests in ecotoxicology: Current practice and problems, in Toxicology: New Aspects to This Scientific Conundrum, Larramendy, M.L. and Soloneski, S., Eds., Rijeka, Croatia: Intech, 2016, pp. 147–177.
79.
go back to reference Marinov, I., Ivanov, Y., Vassileva, N., and Godjevargova, T., Amperometric inhibition-based detection of organophosphorus pesticides in unary and binary mixtures employing flow-injection analysis, Sens. Actuators, B, 2011, vol. 160, no. 1, pp. 1098–1105.CrossRef Marinov, I., Ivanov, Y., Vassileva, N., and Godjevargova, T., Amperometric inhibition-based detection of organophosphorus pesticides in unary and binary mixtures employing flow-injection analysis, Sens. Actuators, B, 2011, vol. 160, no. 1, pp. 1098–1105.CrossRef
80.
go back to reference Marques, S.M. and Esteves da Silva, J.C.G., Quantitative analysis of organophosphorus pesticides in freshwater using an optimized firefly luciferase-based coupled bioluminescent assay, Luminescence, 2014, vol. 29, no. 4, pp. 378–385.PubMedCrossRef Marques, S.M. and Esteves da Silva, J.C.G., Quantitative analysis of organophosphorus pesticides in freshwater using an optimized firefly luciferase-based coupled bioluminescent assay, Luminescence, 2014, vol. 29, no. 4, pp. 378–385.PubMedCrossRef
81.
go back to reference Mazzei, F., Botre, F., and Botre, C., Acid phosphatase/glucose oxidase-based biosensors for the determination of pesticides, Anal. Chim. Acta, 1996, vol. 336, nos. 1–3, pp. 67–75.CrossRef Mazzei, F., Botre, F., and Botre, C., Acid phosphatase/glucose oxidase-based biosensors for the determination of pesticides, Anal. Chim. Acta, 1996, vol. 336, nos. 1–3, pp. 67–75.CrossRef
82.
go back to reference McDaniel, C., US Patent Appl. 20040109853, 2004. McDaniel, C., US Patent Appl. 20040109853, 2004.
83.
go back to reference Muenchen, D.K., Martinazzo, J., Brezolin, A.N., de Cezaro, A.M., Rigo, A.A., Mezarroba, M.N., Manzoli, A., de Lima Leite, F., Steffens, J., and Steffens, C., Cantilever functionalization using peroxidase extract of low cost for glyphosate detection, Appl. Biochem. Biotechnol., 2018, vol. 186, no. 4, pp. 1061–1073.PubMedCrossRef Muenchen, D.K., Martinazzo, J., Brezolin, A.N., de Cezaro, A.M., Rigo, A.A., Mezarroba, M.N., Manzoli, A., de Lima Leite, F., Steffens, J., and Steffens, C., Cantilever functionalization using peroxidase extract of low cost for glyphosate detection, Appl. Biochem. Biotechnol., 2018, vol. 186, no. 4, pp. 1061–1073.PubMedCrossRef
84.
go back to reference Mwila, K., Burton, M.H., Van Dyk, J.S., and Pletschke, B.I., The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures, Environ. Monit. Assess., 2013, vol. 185, no. 3, pp. 2315–2327.PubMedCrossRef Mwila, K., Burton, M.H., Van Dyk, J.S., and Pletschke, B.I., The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures, Environ. Monit. Assess., 2013, vol. 185, no. 3, pp. 2315–2327.PubMedCrossRef
85.
go back to reference Narra, M.R., Begum, G., Rajender, K., and Rao, J.V., In vivo impact of monocrotophos on biochemical parameters of a freshwater fish during subacute toxicity and following cessation of exposure to the insecticide, Z. Naturforsch. C. J. Biosci., 2011, vol. 66, nos. 9–10, pp. 507–514.PubMedCrossRef Narra, M.R., Begum, G., Rajender, K., and Rao, J.V., In vivo impact of monocrotophos on biochemical parameters of a freshwater fish during subacute toxicity and following cessation of exposure to the insecticide, Z. Naturforsch. C. J. Biosci., 2011, vol. 66, nos. 9–10, pp. 507–514.PubMedCrossRef
86.
go back to reference Ni, Y., Huang, C., and Kokot, S., Application of multivariate calibration and artificial neural networks to simultaneous kinetic-spectrophotometric determination of carbamate pesticides, Chemom. Intell. Lab. Syst., 2004, vol. 71, no. 2, pp. 177–193.CrossRef Ni, Y., Huang, C., and Kokot, S., Application of multivariate calibration and artificial neural networks to simultaneous kinetic-spectrophotometric determination of carbamate pesticides, Chemom. Intell. Lab. Syst., 2004, vol. 71, no. 2, pp. 177–193.CrossRef
87.
go back to reference Ni, Y., Cao, D., and Kokot, S., Simultaneous enzymatic kinetic determination of pesticides, carbaryl and phoxim, with the aid of chemometrics, Anal. Chim. Acta, 2007, vol. 588, no. 1, pp. 131–139.PubMedCrossRef Ni, Y., Cao, D., and Kokot, S., Simultaneous enzymatic kinetic determination of pesticides, carbaryl and phoxim, with the aid of chemometrics, Anal. Chim. Acta, 2007, vol. 588, no. 1, pp. 131–139.PubMedCrossRef
88.
go back to reference Pachapur, P.K., Martinez, A.D.L., Pulicharla, R., Pachapur, V.L., Brar, S.K., and Galvez-Cloutier, R., Advances in protein/enzyme-based biosensors for the detection of pesticide contaminants in the environment, in Tools, Techniques and Protocols for Monitoring Environmental Contaminants, Brar, S.K., Hegde, K., and Pachapur, V.L., Eds., Amsterdam: Elsevier, 2019, pp. 231–243. Pachapur, P.K., Martinez, A.D.L., Pulicharla, R., Pachapur, V.L., Brar, S.K., and Galvez-Cloutier, R., Advances in protein/enzyme-based biosensors for the detection of pesticide contaminants in the environment, in Tools, Techniques and Protocols for Monitoring Environmental Contaminants, Brar, S.K., Hegde, K., and Pachapur, V.L., Eds., Amsterdam: Elsevier, 2019, pp. 231–243.
89.
go back to reference Pandard, P., Devillers, J., Charissou, A.-M., Poulsen, V., Jourdain, M.-J., Férard, J.-F., Grand, C., and Bispo, A., Selecting a battery of bioassays for ecotoxicological characterization of wastes, Sci. Total Environ., 2006, vol. 363, nos. 1–3, pp. 114–125.PubMedCrossRef Pandard, P., Devillers, J., Charissou, A.-M., Poulsen, V., Jourdain, M.-J., Férard, J.-F., Grand, C., and Bispo, A., Selecting a battery of bioassays for ecotoxicological characterization of wastes, Sci. Total Environ., 2006, vol. 363, nos. 1–3, pp. 114–125.PubMedCrossRef
90.
go back to reference Pandey, L.K., Lavoie, I., Morin, S., Depuydt, S., Lyu, J., Lee, H., Jung, J., Yeom, D.-H., Han, T., and Park, J., Towards a multi-bioassay-based index for toxicity assessment of fluvial waters, Environ. Monit. Assess., 2019, vol. 191, artic. no. 112. Pandey, L.K., Lavoie, I., Morin, S., Depuydt, S., Lyu, J., Lee, H., Jung, J., Yeom, D.-H., Han, T., and Park, J., Towards a multi-bioassay-based index for toxicity assessment of fluvial waters, Environ. Monit. Assess., 2019, vol. 191, artic. no. 112.
91.
go back to reference Parmar, T.K., Rawtani, D., and Agrawal, Y.K., Bioindicators: The natural indicator of environmental pollution, Front. Life Sci., 2016, vol. 9, no. 2, pp. 110–118.CrossRef Parmar, T.K., Rawtani, D., and Agrawal, Y.K., Bioindicators: The natural indicator of environmental pollution, Front. Life Sci., 2016, vol. 9, no. 2, pp. 110–118.CrossRef
92.
go back to reference Pohanka, M., Biosensors and bioassays based on lipases, principles and applications, a review, Molecules, 2019, vol. 24, artic. no. 616. Pohanka, M., Biosensors and bioassays based on lipases, principles and applications, a review, Molecules, 2019, vol. 24, artic. no. 616.
93.
go back to reference Pundir, C.S., Malik, A., and Pretty, Bio-sensing of organophosphorus pesticides: A review, Biosens. Bioelectron., 2019, vol. 140, artic. no. 111348. Pundir, C.S., Malik, A., and Pretty, Bio-sensing of organophosphorus pesticides: A review, Biosens. Bioelectron., 2019, vol. 140, artic. no. 111348.
94.
go back to reference Rimatskaya, N.V., Nemtseva, E.V., and Kratasyuk, V.A., Bioluminescent assays for monitoring air pollution, Luminescence, 2012, vol. 27, no. 2, p. 154. Rimatskaya, N.V., Nemtseva, E.V., and Kratasyuk, V.A., Bioluminescent assays for monitoring air pollution, Luminescence, 2012, vol. 27, no. 2, p. 154.
95.
go back to reference Sachkova, A.S., Kovel, E.S., Churilov, G.N., Stom, D.I., and Kudryasheva, N.S., Biological activity of carbonic nano-structures – comparison via enzymatic bioassay, J. Soils Sedim., 2019, vol. 19, no. 6, pp. 2689–2696.CrossRef Sachkova, A.S., Kovel, E.S., Churilov, G.N., Stom, D.I., and Kudryasheva, N.S., Biological activity of carbonic nano-structures – comparison via enzymatic bioassay, J. Soils Sedim., 2019, vol. 19, no. 6, pp. 2689–2696.CrossRef
96.
go back to reference Schiffelers, M.-J.W.A., Blaauboer, B.J., Bakker, W.E., Beken, S., Hendriksen, C.F.M., Koëter, H.B.W.M., and Krul, C., Regulatory acceptance and use of 3R models for pharmaceuticals and chemicals: Expert opinions on the state of affairs and the way forward, Regul. Toxicol. Pharmacol., 2014, vol. 69, no. 1, pp. 41–48.PubMedCrossRef Schiffelers, M.-J.W.A., Blaauboer, B.J., Bakker, W.E., Beken, S., Hendriksen, C.F.M., Koëter, H.B.W.M., and Krul, C., Regulatory acceptance and use of 3R models for pharmaceuticals and chemicals: Expert opinions on the state of affairs and the way forward, Regul. Toxicol. Pharmacol., 2014, vol. 69, no. 1, pp. 41–48.PubMedCrossRef
97.
go back to reference Seitkalieva, A.V., Menzorova, N.I., and Rasskazov, V.A., Application of different enzyme assays and biomarkers for pollution monitoring of the marine environment, Environ. Monit. Assess., 2016, vol. 188, artic. no. 70. Seitkalieva, A.V., Menzorova, N.I., and Rasskazov, V.A., Application of different enzyme assays and biomarkers for pollution monitoring of the marine environment, Environ. Monit. Assess., 2016, vol. 188, artic. no. 70.
98.
go back to reference Selivanova, M.A., Mogilnaya, O.A., Badun, G.A., Vydryakova, G.A., Kuznetsov, A.M., and Kudryasheva, N.S., Effect of tritium on luminous marine bacteria and enzyme reactions, J. Environ. Radioact., 2013, vol. 120, pp. 19–25.PubMedCrossRef Selivanova, M.A., Mogilnaya, O.A., Badun, G.A., Vydryakova, G.A., Kuznetsov, A.M., and Kudryasheva, N.S., Effect of tritium on luminous marine bacteria and enzyme reactions, J. Environ. Radioact., 2013, vol. 120, pp. 19–25.PubMedCrossRef
99.
go back to reference Shanks, N., Greek, R., and Greek, J., Are animal models predictive for humans?, Philos. Ethics Humanit. Med., 2009, vol. 4, artic. no. 2. Shanks, N., Greek, R., and Greek, J., Are animal models predictive for humans?, Philos. Ethics Humanit. Med., 2009, vol. 4, artic. no. 2.
100.
go back to reference Shishatskaya, E.I., Esimbekova, E.N., Volova, T.G., Kalacheva, G.S., and Kratasyuk, V.A., Hygienic assessment of polyhydroxyalkanoates—natural polyethers of new generation, Gig. Sanit., 2002, no. 4, pp. 59–63. Shishatskaya, E.I., Esimbekova, E.N., Volova, T.G., Kalacheva, G.S., and Kratasyuk, V.A., Hygienic assessment of polyhydroxyalkanoates—natural polyethers of new generation, Gig. Sanit., 2002, no. 4, pp. 59–63.
101.
go back to reference Shtenberg, G., Massad-Ivanir, N., and Segal, E., Detection of trace heavy metal ions in water by nanostructured porous Si biosensors, Analyst, 2015, vol. 140, no. 13, pp. 4507–4514.PubMedCrossRef Shtenberg, G., Massad-Ivanir, N., and Segal, E., Detection of trace heavy metal ions in water by nanostructured porous Si biosensors, Analyst, 2015, vol. 140, no. 13, pp. 4507–4514.PubMedCrossRef
102.
go back to reference Simonian, A.L., Flounders, A.W., and Wild, J.R., Fet-based biosensors for the direct detection of organophosphate neurotoxins, Electroanalysis, 2004, vol. 16, no. 22, pp. 1896–1906.CrossRef Simonian, A.L., Flounders, A.W., and Wild, J.R., Fet-based biosensors for the direct detection of organophosphate neurotoxins, Electroanalysis, 2004, vol. 16, no. 22, pp. 1896–1906.CrossRef
103.
go back to reference Sogorb, M.A., Estévez, J., and Vilanova, E., Biomarkers in biomonitoring of xenobiotics, in Biomarkers in Toxicology, Gupta, R.C., Ed., San Diego: Elsevier Acad. Press, 2014, pp. 965–973. Sogorb, M.A., Estévez, J., and Vilanova, E., Biomarkers in biomonitoring of xenobiotics, in Biomarkers in Toxicology, Gupta, R.C., Ed., San Diego: Elsevier Acad. Press, 2014, pp. 965–973.
104.
go back to reference Soldatkin, O.O., Kucherenko, I.S., Pyeshkova, V.M., Kukla, A.L., Jaffrezic-Renault, N., El’skaya, A.V., Dzyadevych, S.V., and Soldatkin, A.P., Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions, Bioelectrochemistry, 2012, vol. 83, pp. 25–30.PubMedCrossRef Soldatkin, O.O., Kucherenko, I.S., Pyeshkova, V.M., Kukla, A.L., Jaffrezic-Renault, N., El’skaya, A.V., Dzyadevych, S.V., and Soldatkin, A.P., Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions, Bioelectrochemistry, 2012, vol. 83, pp. 25–30.PubMedCrossRef
105.
go back to reference Solná, R., Dock, E., Christenson, A., Winther-Nielsen, M., Carlsson, C., Emnéus, J., Ruzgas, T., and Skladal, P., Amperometric screen-printed biosensor arrays with co-immobilised oxidoreductases and cholinesterases, Anal. Chim. Acta, 2005, vol. 528, no. 1, pp. 9–19.CrossRef Solná, R., Dock, E., Christenson, A., Winther-Nielsen, M., Carlsson, C., Emnéus, J., Ruzgas, T., and Skladal, P., Amperometric screen-printed biosensor arrays with co-immobilised oxidoreductases and cholinesterases, Anal. Chim. Acta, 2005, vol. 528, no. 1, pp. 9–19.CrossRef
106.
go back to reference Songa, E.A. and Okonkwo, J.O., Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review, Talanta, 2016, vol. 155, pp. 289–304.PubMedCrossRef Songa, E.A. and Okonkwo, J.O., Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review, Talanta, 2016, vol. 155, pp. 289–304.PubMedCrossRef
107.
go back to reference Stasyuk, N., Gayda, G., Zakalskiy, A., Zakalska, O., Errachid, A., and Gonchar, M., Highly selective apo-arginase based method for sensitive enzymatic assay of manganese (II) and cobalt (II) ions, Spectrochim. Acta, Part A, 2018, vol. 193, pp. 349–356.CrossRef Stasyuk, N., Gayda, G., Zakalskiy, A., Zakalska, O., Errachid, A., and Gonchar, M., Highly selective apo-arginase based method for sensitive enzymatic assay of manganese (II) and cobalt (II) ions, Spectrochim. Acta, Part A, 2018, vol. 193, pp. 349–356.CrossRef
108.
go back to reference Sutormin, O.S., Kolosova, E.M., Nemtseva, E.V., Iskorneva, O.V., Lisitsa, A.E., Matvienko, V.S., Esimbekova, E.N., and Kratasyuk, V.A., Enzymatic bioassay of soil: Sensitivity comparison of mono-, double-, and triple-enzyme systems to soil toxicants, Tsitologiya, 2018, vol. 60, no. 10, pp. 826–829.CrossRef Sutormin, O.S., Kolosova, E.M., Nemtseva, E.V., Iskorneva, O.V., Lisitsa, A.E., Matvienko, V.S., Esimbekova, E.N., and Kratasyuk, V.A., Enzymatic bioassay of soil: Sensitivity comparison of mono-, double-, and triple-enzyme systems to soil toxicants, Tsitologiya, 2018, vol. 60, no. 10, pp. 826–829.CrossRef
109.
go back to reference Syshchyk, O., Skryshevsky, V.A., Soldatkin, O.O., and Soldatkin, A.P., Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals, Biosens. Bioelectron., 2015, vol. 66, pp. 89–94.PubMedCrossRef Syshchyk, O., Skryshevsky, V.A., Soldatkin, O.O., and Soldatkin, A.P., Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals, Biosens. Bioelectron., 2015, vol. 66, pp. 89–94.PubMedCrossRef
110.
go back to reference Tekaya, N., Saiapina, O., Ouada, H.B., Lagarde, F., Namour, P., Ouada, H., and Jaffrezic-Renault, N., Bi-enzymatic conductometric biosensor for detection of heavy metal ions and pesticides in water samples based on enzymatic inhibition in Arthrospira platensis, J. Environ. Prot., 2014, vol. 5, pp. 441–453.CrossRef Tekaya, N., Saiapina, O., Ouada, H.B., Lagarde, F., Namour, P., Ouada, H., and Jaffrezic-Renault, N., Bi-enzymatic conductometric biosensor for detection of heavy metal ions and pesticides in water samples based on enzymatic inhibition in Arthrospira platensis, J. Environ. Prot., 2014, vol. 5, pp. 441–453.CrossRef
111.
go back to reference Terekhova, V.A., Wadhia, K., Fedoseeva, E.V., and Uchanov, P.V., Bioassay standardization issues in freshwater ecosystem assessment: Test cultures and test conditions, Knowl. Manag. Aquat. Ecosyst., 2018, vol. 419, artic. no. 32. Terekhova, V.A., Wadhia, K., Fedoseeva, E.V., and Uchanov, P.V., Bioassay standardization issues in freshwater ecosystem assessment: Test cultures and test conditions, Knowl. Manag. Aquat. Ecosyst., 2018, vol. 419, artic. no. 32.
112.
go back to reference Van Dyk, J.S. and Pletschke, B., Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment, Chemosphere, 2011, vol. 82, no. 3, pp. 291–307.PubMedCrossRef Van Dyk, J.S. and Pletschke, B., Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment, Chemosphere, 2011, vol. 82, no. 3, pp. 291–307.PubMedCrossRef
113.
go back to reference Vetrova, E., Kratasyuk, V., and Kudryasheva, N., Bioluminescent characteristics of Lake Shira water, Aquat. Ecol., 2002, vol. 36, pp. 309–315.CrossRef Vetrova, E., Kratasyuk, V., and Kudryasheva, N., Bioluminescent characteristics of Lake Shira water, Aquat. Ecol., 2002, vol. 36, pp. 309–315.CrossRef
114.
go back to reference Vetrova, E., Esimbekova, E., Remmel, N., Kotova, S., Beloskov, N., Kratasyuk, V., and Gitelson, I., A bioluminescent signal system: Detection of chemical toxicants in water, Luminescence, 2007, vol. 22, no. 3, pp. 206–214.PubMedCrossRef Vetrova, E., Esimbekova, E., Remmel, N., Kotova, S., Beloskov, N., Kratasyuk, V., and Gitelson, I., A bioluminescent signal system: Detection of chemical toxicants in water, Luminescence, 2007, vol. 22, no. 3, pp. 206–214.PubMedCrossRef
115.
go back to reference Vighi, M. and Villa, S., Ecotoxicology: The challenges for the 21st century, Toxics, 2013, vol. 1, no. 1, pp. 18–35.CrossRef Vighi, M. and Villa, S., Ecotoxicology: The challenges for the 21st century, Toxics, 2013, vol. 1, no. 1, pp. 18–35.CrossRef
116.
go back to reference Vorobeichik, E.L., Sadykov, O.F., and Farafontov, M.G., Ekologicheskoe normirovanie tekhnogennykh zagryaznenii nazemnykh ekosistem (Ecological Standardization of Technogenic Pollution in Terrestrial Ecosystems), Yekaterinburg: Nauka, 1994. Vorobeichik, E.L., Sadykov, O.F., and Farafontov, M.G., Ekologicheskoe normirovanie tekhnogennykh zagryaznenii nazemnykh ekosistem (Ecological Standardization of Technogenic Pollution in Terrestrial Ecosystems), Yekaterinburg: Nauka, 1994.
117.
go back to reference Wang, N., Increasing the reliability and reproducibility of aquatic ecotoxicology: Learn lessons from aquaculture research, Ecotoxicol. Environ. Saf., 2018, vol. 161, pp. 785–794.PubMedCrossRef Wang, N., Increasing the reliability and reproducibility of aquatic ecotoxicology: Learn lessons from aquaculture research, Ecotoxicol. Environ. Saf., 2018, vol. 161, pp. 785–794.PubMedCrossRef
118.
go back to reference Wang, J.-I., Xia, Q., Zhang, A.-P., Hu, X.-Y., and Lin, C.-M., Determination of organophosphorus pesticide residues in vegetables by an enzyme inhibition method using α‑naphthyl acetate esterase extracted from wheat flour, J. Zhejiang Univ. Sci. B, 2012, vol. 13, no. 4, pp. 267–273.PubMedPubMedCentralCrossRef Wang, J.-I., Xia, Q., Zhang, A.-P., Hu, X.-Y., and Lin, C.-M., Determination of organophosphorus pesticide residues in vegetables by an enzyme inhibition method using α‑naphthyl acetate esterase extracted from wheat flour, J. Zhejiang Univ. Sci. B, 2012, vol. 13, no. 4, pp. 267–273.PubMedPubMedCentralCrossRef
119.
go back to reference Wang, C., Zhang, Q., Wang, F., and Liang, W., Toxicological effects of dimethomorph on soil enzymatic activity and soil earthworm (Eisenia fetida), Chemosphere, 2017, vol. 169, pp. 316–323.PubMedCrossRef Wang, C., Zhang, Q., Wang, F., and Liang, W., Toxicological effects of dimethomorph on soil enzymatic activity and soil earthworm (Eisenia fetida), Chemosphere, 2017, vol. 169, pp. 316–323.PubMedCrossRef
120.
go back to reference Watthaisong, P., Pongpamorn, P., Pimviriyakul, P., Maenpuen, S., Ohmiya, Y., and Chaiyen, P., A chemo-enzymatic cascade for the smart detection of nitro- and halogenated phenols, Angew. Chem., Int. Ed., 2019, vol. 58, no. 38, pp. 13254–13258.CrossRef Watthaisong, P., Pongpamorn, P., Pimviriyakul, P., Maenpuen, S., Ohmiya, Y., and Chaiyen, P., A chemo-enzymatic cascade for the smart detection of nitro- and halogenated phenols, Angew. Chem., Int. Ed., 2019, vol. 58, no. 38, pp. 13254–13258.CrossRef
121.
go back to reference Weyandt, R.G., Okologische bewertung von arbeitsflussigkeiten und schmierolen durch biotests, Olhydraul. Pheum., 1990, vol. 34, no. 6, pp. 396–398. Weyandt, R.G., Okologische bewertung von arbeitsflussigkeiten und schmierolen durch biotests, Olhydraul. Pheum., 1990, vol. 34, no. 6, pp. 396–398.
122.
go back to reference Wieczerzak, M., Namieśnik, J., and Kudłak, B., Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review, Environ. Int., 2016, vol. 94, pp. 341–361.PubMedCrossRef Wieczerzak, M., Namieśnik, J., and Kudłak, B., Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review, Environ. Int., 2016, vol. 94, pp. 341–361.PubMedCrossRef
123.
go back to reference Wilkinson, C.F., Christoph, G.R., Julien, E., Kelley, J.M., Kronenberg, J., McCarthy, J., and Reiss, R., Assessing the risks of exposures to multiple chemicals with a common mechanism of toxicity: How to cumulate?, Regul. Toxicol. Pharmacol., 2000, vol. 31, no. 1, pp. 30–43.PubMedCrossRef Wilkinson, C.F., Christoph, G.R., Julien, E., Kelley, J.M., Kronenberg, J., McCarthy, J., and Reiss, R., Assessing the risks of exposures to multiple chemicals with a common mechanism of toxicity: How to cumulate?, Regul. Toxicol. Pharmacol., 2000, vol. 31, no. 1, pp. 30–43.PubMedCrossRef
124.
go back to reference Xu, T., Close, D., Smartt, A., Ripp, S., and Sayler, G., Detection of organic compounds with whole-cell bioluminescent bioassays, in Bioluminescence: Fundamentals and Applications in Biotechnology, Thouand, G. and Marks, R., Eds., Berlin: Springer, 2014, vol. 1, pp. 111–151. Xu, T., Close, D., Smartt, A., Ripp, S., and Sayler, G., Detection of organic compounds with whole-cell bioluminescent bioassays, in Bioluminescence: Fundamentals and Applications in Biotechnology, Thouand, G. and Marks, R., Eds., Berlin: Springer, 2014, vol. 1, pp. 111–151.
125.
go back to reference Yang, X., Dai, J., Zhao, S., Li, R., Goulette, T., Chen, X., and Xiao, H., Identification and characterization of a novel carboxylesterase from Phaseolus vulgaris for detection of organophosphate and carbamates pesticides, J. Sci. Food Agric., 2018, vol. 98, no. 13, pp. 5095–5104.PubMedCrossRef Yang, X., Dai, J., Zhao, S., Li, R., Goulette, T., Chen, X., and Xiao, H., Identification and characterization of a novel carboxylesterase from Phaseolus vulgaris for detection of organophosphate and carbamates pesticides, J. Sci. Food Agric., 2018, vol. 98, no. 13, pp. 5095–5104.PubMedCrossRef
126.
go back to reference Zhang, Y., Zeng, C.-M., Tang, L., Huang, D.-L., Jiang, X.-Y., and Chen, Y.-N., A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode, Biosens. Bioelectron., 2007, vol. 22, nos. 9–10, pp. 2121–2126.PubMedCrossRef Zhang, Y., Zeng, C.-M., Tang, L., Huang, D.-L., Jiang, X.-Y., and Chen, Y.-N., A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode, Biosens. Bioelectron., 2007, vol. 22, nos. 9–10, pp. 2121–2126.PubMedCrossRef
127.
go back to reference Zhang, C., Zhou, T., Zhu, L., Juhasz, A., Du, Z., Li, B., Wang, J., Wang, J., and Sun, Y., Response of soil microbes after direct contact with pyraclostrobin in fluvo-aquic soil, Environ. Pollut., 2019, vol. 255, artic. no. 113164. Zhang, C., Zhou, T., Zhu, L., Juhasz, A., Du, Z., Li, B., Wang, J., Wang, J., and Sun, Y., Response of soil microbes after direct contact with pyraclostrobin in fluvo-aquic soil, Environ. Pollut., 2019, vol. 255, artic. no. 113164.
128.
go back to reference Zheng, Y., Liu, Z., Jing, Y., Li, J., and Zhan, H., An acetylcholinesterase biosensor based on ionic liquid functionalized graphene-gelatin-modified electrode for sensitive detection of pesticides, Sens. Actuators, B, 2015, vol. 210, pp. 389–397.CrossRef Zheng, Y., Liu, Z., Jing, Y., Li, J., and Zhan, H., An acetylcholinesterase biosensor based on ionic liquid functionalized graphene-gelatin-modified electrode for sensitive detection of pesticides, Sens. Actuators, B, 2015, vol. 210, pp. 389–397.CrossRef
Metadata
Title
Enzymatic Biotesting: Scientific Basis and Application
Authors
E. N. Esimbekova
I. G. Torgashina
V. P. Kalyabina
V. A. Kratasyuk
Publication date
01-05-2021
Publisher
Pleiades Publishing
Published in
Contemporary Problems of Ecology / Issue 3/2021
Print ISSN: 1995-4255
Electronic ISSN: 1995-4263
DOI
https://doi.org/10.1134/S1995425521030069

Other articles of this Issue 3/2021

Contemporary Problems of Ecology 3/2021 Go to the issue