Skip to main content
Top
Published in: Journal of Polymer Research 12/2013

01-12-2013 | Review Paper

Equal-channel angular extrusion of polymers

Authors: V. A. Beloshenko, Yu. V. Voznyak, I. Yu. Reshidova, M. Naït-Abdelaziz, F. Zairi

Published in: Journal of Polymer Research | Issue 12/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the priority lines of development of physics of polymers and material science is the development of the principles of structure modification of polymeric materials and the study of the relation between the structure and the properties, aimed to their control. Nowadays, great attention is paid to investigation of severe plastic deformation (SPD) effect on the structure modification of polymers and polymeric composites as well as to the development of the simple shear based methods of formation of orientation order. The main difference between SPD and traditional methods of pressure shaping such as die extrusion, rolling, drawing is the ability to accumulate essential plastic deformation in the processed materials. At the same time, the billet form and size are maintained and there is a possibility of development of varied deformation routes in order to generate different forms of molecular orientation. The most widely used SPD methods applied to polymeric materials are equal-channel angular extrusion (ECAE) and its modified version, so-called equal-channel multiple angular extrusion (ECMAE). The investigations carried out in research centers of USA, Japan, China, France and Ukraine showed perspectives of the use of these methods for improvement of the set of the existing physical and mechanical properties and the formation of functional properties previously unknown. In particular, in the case of semi-crystalline polymers, SPD results in increase in rigidity and strength at conserved high level of plasticity. For polymeric composites, SPD facilitates homogeneous distribution and better dispersion of the filler particles within the polymeric matrix, orientation of transition layers and polymeric matrix etc. As a result, physical and mechanical characteristics higher of those of polymeric composites without SPD were achieved.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Segal VM (1999) Equal channel angular extrusion: from macromechanics to structure formation. J Mater Sci Eng 271A:322–333CrossRef Segal VM (1999) Equal channel angular extrusion: from macromechanics to structure formation. J Mater Sci Eng 271A:322–333CrossRef
2.
go back to reference Nakashima K, Horita Z, Nemoto M, Langdon TG (2000) Development of a multi-pass facility for equal channel angular pressing to high total strains. Mater Sci Eng 281A:82–87CrossRef Nakashima K, Horita Z, Nemoto M, Langdon TG (2000) Development of a multi-pass facility for equal channel angular pressing to high total strains. Mater Sci Eng 281A:82–87CrossRef
3.
go back to reference Valiev RZ, Langdon TG (2006) Developments in the use of ECAP processing for grain refinement. Rev Adv Mater Sci 13:15–26 Valiev RZ, Langdon TG (2006) Developments in the use of ECAP processing for grain refinement. Rev Adv Mater Sci 13:15–26
4.
go back to reference Rosochowski A, Olejnik L, Rechert M (2006) Channel configuration effects in 3D-ECAP. Mater Sci Forum 503–504:179–184CrossRef Rosochowski A, Olejnik L, Rechert M (2006) Channel configuration effects in 3D-ECAP. Mater Sci Forum 503–504:179–184CrossRef
5.
go back to reference Nagarajan D, Chakkingal U, Venugopal P (2007) Influence of cold extrusion on the microstructure and mechanical properties of an aluminum alloy previously subjected to equal channel angular pressing. J Mater Proc Technol 182:363–368CrossRef Nagarajan D, Chakkingal U, Venugopal P (2007) Influence of cold extrusion on the microstructure and mechanical properties of an aluminum alloy previously subjected to equal channel angular pressing. J Mater Proc Technol 182:363–368CrossRef
6.
go back to reference Sue H-J, Li CK-Y (1998) Control of orientation of lamellar structure in linear low density polyethylene via a novel equal channel angular extrusion process. J Mater Sci Lett 17:853–856CrossRef Sue H-J, Li CK-Y (1998) Control of orientation of lamellar structure in linear low density polyethylene via a novel equal channel angular extrusion process. J Mater Sci Lett 17:853–856CrossRef
7.
go back to reference Beygelzimer YE, Beloshenko VA (2004) Solid-state extrusion. In: Kroschewitz JI (ed) Encylopedia of polymer science and technology. Koboken, New Jersey, pp 850–866 Beygelzimer YE, Beloshenko VA (2004) Solid-state extrusion. In: Kroschewitz JI (ed) Encylopedia of polymer science and technology. Koboken, New Jersey, pp 850–866
8.
go back to reference Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2010) Equal-channel multiangular extrusion of semicrystalline polymers. Polym Eng Sci 50:1000–1006CrossRef Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2010) Equal-channel multiangular extrusion of semicrystalline polymers. Polym Eng Sci 50:1000–1006CrossRef
9.
go back to reference Beloshenko VA, Beygelzimer YE, Varyukhin VN (2008) Solid-phase extrusion of polymers. Naukova dumka, Kiyv (in Russian) Beloshenko VA, Beygelzimer YE, Varyukhin VN (2008) Solid-phase extrusion of polymers. Naukova dumka, Kiyv (in Russian)
10.
go back to reference Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2009) Solid-phase extrusion of polyamide under simple shear. Polym Sci 51A:916–922CrossRef Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2009) Solid-phase extrusion of polyamide under simple shear. Polym Sci 51A:916–922CrossRef
11.
go back to reference Cambell B, Edward G (1999) Equal-channel angular extrusion of polyalkine. Plast Rubber Compos 28:467–475 Cambell B, Edward G (1999) Equal-channel angular extrusion of polyalkine. Plast Rubber Compos 28:467–475
12.
go back to reference Wang T, Tang S, Chen J (2011) Effect of processing route on morphology and mechanical behavior of polypropylene in equal-channel angular extrusion. J Appl Polym Sci 122:2146–2158CrossRef Wang T, Tang S, Chen J (2011) Effect of processing route on morphology and mechanical behavior of polypropylene in equal-channel angular extrusion. J Appl Polym Sci 122:2146–2158CrossRef
13.
go back to reference Bartczak Z, Argon AS, Cohen RE (1994) Texture evolution in large strain simple shear deformation of high density polyethylene. Polymer 35:3427–3441CrossRef Bartczak Z, Argon AS, Cohen RE (1994) Texture evolution in large strain simple shear deformation of high density polyethylene. Polymer 35:3427–3441CrossRef
14.
go back to reference Philips A, Zhu P, Edwards GE (2006) Simple shear deformation of polypropylene via the equal-channel angular extrusion process. Macromolecules 39:5796–5803CrossRef Philips A, Zhu P, Edwards GE (2006) Simple shear deformation of polypropylene via the equal-channel angular extrusion process. Macromolecules 39:5796–5803CrossRef
15.
go back to reference Qiu J, Murata T, Wu X, Kitagawa M, Kudo M (2012) Plastic deformation mechanism of crystalline polymer materials in the equal-channel angular extrusion process. J Mater Proc Techn 212:1528–1536CrossRef Qiu J, Murata T, Wu X, Kitagawa M, Kudo M (2012) Plastic deformation mechanism of crystalline polymer materials in the equal-channel angular extrusion process. J Mater Proc Techn 212:1528–1536CrossRef
16.
go back to reference Xia Z-Y, Sue H-J, Rieker TP (2000) Morphological evolution of poly(ethylene terephthalate) during equal-channel angular extrusion process. Macromolecules 33:8746–8755CrossRef Xia Z-Y, Sue H-J, Rieker TP (2000) Morphological evolution of poly(ethylene terephthalate) during equal-channel angular extrusion process. Macromolecules 33:8746–8755CrossRef
17.
go back to reference Xia Z, Sue H-J, Hsieh AJ, Huang JW-L (2001) Dynamic mechanical behavior of oriented semicrystalline polyethylene terephthalate. J Polym Phys 39B:1394–1403CrossRef Xia Z, Sue H-J, Hsieh AJ, Huang JW-L (2001) Dynamic mechanical behavior of oriented semicrystalline polyethylene terephthalate. J Polym Phys 39B:1394–1403CrossRef
18.
go back to reference Wang Z-G, Xia Z-Y, Yu Z-Q, Chen E-Q, Sue H-J, Han CC, Hsiao BS (2006) Lamellar formation and relaxation in simple sheared poly(ethylene terephthalate) by small-angle X-ray scattering. Macromolecules 39:2930–2939CrossRef Wang Z-G, Xia Z-Y, Yu Z-Q, Chen E-Q, Sue H-J, Han CC, Hsiao BS (2006) Lamellar formation and relaxation in simple sheared poly(ethylene terephthalate) by small-angle X-ray scattering. Macromolecules 39:2930–2939CrossRef
19.
go back to reference Xia Z, Hartwing T, Sue H-J (2004) Mechanical behavior of bulk poly(ethylene terephthalate) subjected to simple shear. J Macromol Sci 43B:385–403 Xia Z, Hartwing T, Sue H-J (2004) Mechanical behavior of bulk poly(ethylene terephthalate) subjected to simple shear. J Macromol Sci 43B:385–403
20.
go back to reference Ma J, Simon GP, Edward GH (2008) The effect of shear deformation on nylon-6 and two types of nylon-6/clay nanocomposite. Macromolecules 41:409–420CrossRef Ma J, Simon GP, Edward GH (2008) The effect of shear deformation on nylon-6 and two types of nylon-6/clay nanocomposite. Macromolecules 41:409–420CrossRef
21.
go back to reference Cui H, Zhang L, Gong J, Ma Y, Ying W (2006) Reinforcement of biodegradable poly(DL-lactic acid) material by equal-channel angular extrusion. Macromol Symp 242:55–59CrossRef Cui H, Zhang L, Gong J, Ma Y, Ying W (2006) Reinforcement of biodegradable poly(DL-lactic acid) material by equal-channel angular extrusion. Macromol Symp 242:55–59CrossRef
22.
go back to reference Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2009) New methods of solid-phase modification of polymers by simple-shear deformation. Doklady Phys Chem 426:81–83CrossRef Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2009) New methods of solid-phase modification of polymers by simple-shear deformation. Doklady Phys Chem 426:81–83CrossRef
23.
go back to reference Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2011) Solid-phase extrusion of polyamide-6 by using combined deformation schemes. Polym Eng Sci 51:1092–1098CrossRef Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2011) Solid-phase extrusion of polyamide-6 by using combined deformation schemes. Polym Eng Sci 51:1092–1098CrossRef
24.
go back to reference Beloshenko VA, Voznyak AV, Voznyak YV, Glasunova VA, Konstantinova TE (2012) “Polyamide-6 structure modification by combined solid-phase extrusion’. Polym Eng Sci 52:1815–1820CrossRef Beloshenko VA, Voznyak AV, Voznyak YV, Glasunova VA, Konstantinova TE (2012) “Polyamide-6 structure modification by combined solid-phase extrusion’. Polym Eng Sci 52:1815–1820CrossRef
25.
go back to reference Kozlov HV, Beloshenko VO, Aloiev VZ, Varyukhin VM (2000) Microhardness of extruded polyethylene and the composite. Mater Sci 36:98–101 Kozlov HV, Beloshenko VO, Aloiev VZ, Varyukhin VM (2000) Microhardness of extruded polyethylene and the composite. Mater Sci 36:98–101
26.
go back to reference Beloshenko VA, Voznyak AV, Voznyak YV, Dudarenko GV (2013) Equal-channel multiple angular extrusion of polyethelene. J Appl Polym Sci 127:1377–1386CrossRef Beloshenko VA, Voznyak AV, Voznyak YV, Dudarenko GV (2013) Equal-channel multiple angular extrusion of polyethelene. J Appl Polym Sci 127:1377–1386CrossRef
27.
go back to reference Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2012) Polyoxymethylene orientation by equal-channel multiple angular extrusion. J Appl Polym Sci 126:837–844CrossRef Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2012) Polyoxymethylene orientation by equal-channel multiple angular extrusion. J Appl Polym Sci 126:837–844CrossRef
28.
go back to reference Beloshenko VA, Voznyak AV, Voznyak YV (2011) Modification of polyamide-6 structure by combined methods of solid-phase extrusion. High Pres Res 31:153–157CrossRef Beloshenko VA, Voznyak AV, Voznyak YV (2011) Modification of polyamide-6 structure by combined methods of solid-phase extrusion. High Pres Res 31:153–157CrossRef
29.
go back to reference Xia K, Wu X, Honma T, Ringer SP (2007) Ultrafine pure aluminium through back pressure equal channel angular consolidation (BP-ECAC) of particles. J Mater Sci 42:1551–1560CrossRef Xia K, Wu X, Honma T, Ringer SP (2007) Ultrafine pure aluminium through back pressure equal channel angular consolidation (BP-ECAC) of particles. J Mater Sci 42:1551–1560CrossRef
30.
go back to reference Al-Goussous S, Wu X, Yuan Q, Xia K (2007) Back pressure equal channel angular consolidation of nylon 12. Mater Forum 31:36–38 Al-Goussous S, Wu X, Yuan Q, Xia K (2007) Back pressure equal channel angular consolidation of nylon 12. Mater Forum 31:36–38
31.
go back to reference Pat. US2012/0178892A1 Angular extrusion for polymer consolidation/Douglas W. Van Citters – Publ. 12.06.2012. Pat. US2012/0178892A1 Angular extrusion for polymer consolidation/Douglas W. Van Citters – Publ. 12.06.2012.
32.
go back to reference Zhang X, Gao D, Wu X, Xia K (2008) Bulk plastic materials obtained from processing raw powder of renewable natural polymers via back pressure equal-channel angular consolidation (BP-ECAC). Europ Polym J 44:780–792CrossRef Zhang X, Gao D, Wu X, Xia K (2008) Bulk plastic materials obtained from processing raw powder of renewable natural polymers via back pressure equal-channel angular consolidation (BP-ECAC). Europ Polym J 44:780–792CrossRef
33.
go back to reference Zhang X, Wu X, Gao D, Xia K (2012) Bulk cellulose plastic materials from processing cellulose powder using back pressure-equal channel angular pressing. Carbohydrate Polym 87:2470–2476CrossRef Zhang X, Wu X, Gao D, Xia K (2012) Bulk cellulose plastic materials from processing cellulose powder using back pressure-equal channel angular pressing. Carbohydrate Polym 87:2470–2476CrossRef
34.
go back to reference Weon JI, Creasy TS, Sue H-J, Hsieh AJ (2005) Mechanical behavior of polymethylmethacrylate with molecules oriented via simple shear. Polym Eng Sci 45:314–324CrossRef Weon JI, Creasy TS, Sue H-J, Hsieh AJ (2005) Mechanical behavior of polymethylmethacrylate with molecules oriented via simple shear. Polym Eng Sci 45:314–324CrossRef
35.
go back to reference Xia Z, Sue H-J, Hsieh AJ (2001) Impact fracture behavior of molecularly oriented polycarbonate sheets. J Appl Polym Sci 79:2060–2066CrossRef Xia Z, Sue H-J, Hsieh AJ (2001) Impact fracture behavior of molecularly oriented polycarbonate sheets. J Appl Polym Sci 79:2060–2066CrossRef
36.
go back to reference Li CK, Xia Z-H, Sue H-J (2000) Simple shear plastic deformation behavior of polycarbonate plate. II. Mechanical property characterization. Polymer 41:6285–6293CrossRef Li CK, Xia Z-H, Sue H-J (2000) Simple shear plastic deformation behavior of polycarbonate plate. II. Mechanical property characterization. Polymer 41:6285–6293CrossRef
37.
go back to reference Yoshioka S, Tsukamoto K (2009) Effect of ECAE on plastic deformation behavior of glassy polymers. Jpn Soc Mater Sci 58:29–34CrossRef Yoshioka S, Tsukamoto K (2009) Effect of ECAE on plastic deformation behavior of glassy polymers. Jpn Soc Mater Sci 58:29–34CrossRef
38.
go back to reference Creasy TS, Kang YS (2004) Fiber orientation during equal channel angular extrusion of short fiber reinforced. J Thermoplast Compos Mater 17:205–227CrossRef Creasy TS, Kang YS (2004) Fiber orientation during equal channel angular extrusion of short fiber reinforced. J Thermoplast Compos Mater 17:205–227CrossRef
39.
go back to reference Creasy TS, Kang YS (2005) Fiber fracture during equal-channel angular extrusion of short fiber-reinforced thermoplastics. J Mater Proc Techn 160:90–98CrossRef Creasy TS, Kang YS (2005) Fiber fracture during equal-channel angular extrusion of short fiber-reinforced thermoplastics. J Mater Proc Techn 160:90–98CrossRef
40.
go back to reference Weon JI, Sue H-J (2005) Effect of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite. Polymer 46:6325–6334CrossRef Weon JI, Sue H-J (2005) Effect of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite. Polymer 46:6325–6334CrossRef
41.
go back to reference Weon JI, Xia Z-Y, Sue H-J (2005) Morphological characterization of nylon-6 nanocomposite following a large-scale simple shear process. J Polym Sci 43B:3555–3566CrossRef Weon JI, Xia Z-Y, Sue H-J (2005) Morphological characterization of nylon-6 nanocomposite following a large-scale simple shear process. J Polym Sci 43B:3555–3566CrossRef
42.
go back to reference Li H, Huang X, Huang C, Zhao Y (2012) An investigation about solid equal-channel angular extrusion. J Appl Polym Sci 123:2222–2227CrossRef Li H, Huang X, Huang C, Zhao Y (2012) An investigation about solid equal-channel angular extrusion. J Appl Polym Sci 123:2222–2227CrossRef
43.
go back to reference Li H, Huang C, Huang X (2013) Structure and properties of polypropylene/high-density polyethylene blends by solid equal-channel angular extrusion. J Appl Polym Sci. doi:10.1002/APP.39759 Li H, Huang C, Huang X (2013) Structure and properties of polypropylene/high-density polyethylene blends by solid equal-channel angular extrusion. J Appl Polym Sci. doi:10.​1002/​APP.​39759
44.
go back to reference Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Plastic working of metals by simple shear. Russ Metall 1:99–105, English translation Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Plastic working of metals by simple shear. Russ Metall 1:99–105, English translation
45.
go back to reference Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Mater 35:143–146CrossRef Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Mater 35:143–146CrossRef
46.
go back to reference Segal VM (2003) . Slip line solutions, deformation mode and loading history during equal channel angular extrusion. Mater Sci Eng 345A:36–46CrossRef Segal VM (2003) . Slip line solutions, deformation mode and loading history during equal channel angular extrusion. Mater Sci Eng 345A:36–46CrossRef
47.
go back to reference Beyerlein IJ, Tome CN (2004) Analytical modeling of material flow in equal channel angular extrusion (ECAE). Mater Sci Eng 380A:171–190CrossRef Beyerlein IJ, Tome CN (2004) Analytical modeling of material flow in equal channel angular extrusion (ECAE). Mater Sci Eng 380A:171–190CrossRef
48.
go back to reference Aour B, Zairi F, Gloaguen JM, Nait-Abdelaziz M, Lefebvre JM (2006) Numerical investigation on equal channel angular extrusion process of polymers. Comput Mater Sci 37:491–506CrossRef Aour B, Zairi F, Gloaguen JM, Nait-Abdelaziz M, Lefebvre JM (2006) Numerical investigation on equal channel angular extrusion process of polymers. Comput Mater Sci 37:491–506CrossRef
49.
go back to reference Zairi F, Aour B, Gloaguen JM, Nait-Abdelaziz M, Lefebvre JM (2006) Numerical modeling of elastic-viscoelastic equal channel angular extrusion process of a polymer. Comput Mater Sci 38:202–216CrossRef Zairi F, Aour B, Gloaguen JM, Nait-Abdelaziz M, Lefebvre JM (2006) Numerical modeling of elastic-viscoelastic equal channel angular extrusion process of a polymer. Comput Mater Sci 38:202–216CrossRef
50.
go back to reference Zairi F, Aour B, Gloaguen JM, Nait-Abdelaziz M, Lefebvre JM (2007) Influence of the initial yield strain magnitude on the materials flow in equal channel angular extrusion process. Scripta materialia 56:105–108CrossRef Zairi F, Aour B, Gloaguen JM, Nait-Abdelaziz M, Lefebvre JM (2007) Influence of the initial yield strain magnitude on the materials flow in equal channel angular extrusion process. Scripta materialia 56:105–108CrossRef
51.
go back to reference Aour B, Zairi F, Nait-Abdelaziz M, Gloaguen JM, Ahmani OR, Lefebvre JM (2008) A computational study of die geometry and processing conditions effects on equal channel angular extrusion of a polymer. Int J Mechan Sci 50:589–602CrossRef Aour B, Zairi F, Nait-Abdelaziz M, Gloaguen JM, Ahmani OR, Lefebvre JM (2008) A computational study of die geometry and processing conditions effects on equal channel angular extrusion of a polymer. Int J Mechan Sci 50:589–602CrossRef
52.
go back to reference Zairi F, Aour B, Gloaguen JM, Nait-Abdelaziz M, Lefebvre JM (2008) Steady plastic flow of a polymer during equal channel angular extrusion process: experimental and numerical modeling. Polym Eng Sci 48:1015–1021CrossRef Zairi F, Aour B, Gloaguen JM, Nait-Abdelaziz M, Lefebvre JM (2008) Steady plastic flow of a polymer during equal channel angular extrusion process: experimental and numerical modeling. Polym Eng Sci 48:1015–1021CrossRef
53.
go back to reference Aour B, Zairi F, Boulahia M, Nait-Abdelaziz M, Gloaguen JM, Lefebvre JM (2009) Experimental and numerical study ECAE deformation of polyolefins. Comput Mater Sci 45:646–652CrossRef Aour B, Zairi F, Boulahia M, Nait-Abdelaziz M, Gloaguen JM, Lefebvre JM (2009) Experimental and numerical study ECAE deformation of polyolefins. Comput Mater Sci 45:646–652CrossRef
54.
go back to reference Aour B, Zairi F, Nait-Abdelaziz M, Gloaguen JM, Lefebvre JM (2009) Finite element analysis of plastic strain distribution in multipass equal channel angular extrusion process of HDPE. J Manuf Sci Eng 131:524–534 Aour B, Zairi F, Nait-Abdelaziz M, Gloaguen JM, Lefebvre JM (2009) Finite element analysis of plastic strain distribution in multipass equal channel angular extrusion process of HDPE. J Manuf Sci Eng 131:524–534
55.
go back to reference Aour B, Zairi F, Nait-Abdelaziz M, Gloaguen JM, Lefebvre JM (2010) Analysis of polypropylene deformation in a 135° equal channel angular extrusion die: experiments and three-dimensional finite element simulation. Key Eng Mater 71 Aour B, Zairi F, Nait-Abdelaziz M, Gloaguen JM, Lefebvre JM (2010) Analysis of polypropylene deformation in a 135° equal channel angular extrusion die: experiments and three-dimensional finite element simulation. Key Eng Mater 71
56.
go back to reference Beloshenko VA, Voznyak YV, Voznyak AV (2010) Semicrystalline polymers. Properties after equal-channel multiple-angular extrusion. Chem Ind Ukraine 1:42–44 (in Russian) Beloshenko VA, Voznyak YV, Voznyak AV (2010) Semicrystalline polymers. Properties after equal-channel multiple-angular extrusion. Chem Ind Ukraine 1:42–44 (in Russian)
57.
go back to reference Sue H-J, Dilan H, Li CK-Y (1999) Simple shear plastic deformation behavior of polycarbonate plate due to the equal channel angular extrusion process. I: finite element methods modeling. Polym Eng Sci 39:2505–2515CrossRef Sue H-J, Dilan H, Li CK-Y (1999) Simple shear plastic deformation behavior of polycarbonate plate due to the equal channel angular extrusion process. I: finite element methods modeling. Polym Eng Sci 39:2505–2515CrossRef
58.
go back to reference Semiatin SL, Delo DP, Shell EB (2000) The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion. Acta Mater 48:1841–1851CrossRef Semiatin SL, Delo DP, Shell EB (2000) The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion. Acta Mater 48:1841–1851CrossRef
59.
go back to reference Bowen JR, Gholinia A, Roberts SM, Prangnell PB (2000) Analysis of the billet deformation behaviour in equal channel angular extrusion. Mater Sci Eng 287A:87–99CrossRef Bowen JR, Gholinia A, Roberts SM, Prangnell PB (2000) Analysis of the billet deformation behaviour in equal channel angular extrusion. Mater Sci Eng 287A:87–99CrossRef
60.
go back to reference Oh SJ, Kang SB (2003) Analysis of the billet deformation during equal channel angular pressing. Mater Sci Eng 343A:107–115CrossRef Oh SJ, Kang SB (2003) Analysis of the billet deformation during equal channel angular pressing. Mater Sci Eng 343A:107–115CrossRef
61.
go back to reference Son IH, Lee JH, Im YT (2006) Finite element investigation of equal channel angular extrusion with back pressure. J Mater Proc Tech 171:480–487CrossRef Son IH, Lee JH, Im YT (2006) Finite element investigation of equal channel angular extrusion with back pressure. J Mater Proc Tech 171:480–487CrossRef
62.
go back to reference Boulahia R, Gloaguen JM, Zaïri F, Naït-Abdelaziz M, Seguela R, Boukharouba T, Lefebvre JM (2009) Deformation behaviour and mechanical properties of polypropylene processed by equal channel angular extrusion: effects of back-pressure and extrusion velocity. Polymer 50:5508–5517CrossRef Boulahia R, Gloaguen JM, Zaïri F, Naït-Abdelaziz M, Seguela R, Boukharouba T, Lefebvre JM (2009) Deformation behaviour and mechanical properties of polypropylene processed by equal channel angular extrusion: effects of back-pressure and extrusion velocity. Polymer 50:5508–5517CrossRef
Metadata
Title
Equal-channel angular extrusion of polymers
Authors
V. A. Beloshenko
Yu. V. Voznyak
I. Yu. Reshidova
M. Naït-Abdelaziz
F. Zairi
Publication date
01-12-2013
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 12/2013
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-013-0322-2

Other articles of this Issue 12/2013

Journal of Polymer Research 12/2013 Go to the issue

Premium Partners