Skip to main content
Top

2014 | OriginalPaper | Chapter

15. Equilibrium and Nonequilibrium Phase Transitions in a Continuum Model of an Anesthetized Cortex

Authors : D. Alistair Steyn-Ross, Moira L. Steyn-Ross, Jamie W. Sleigh

Published in: Neural Fields

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter we investigate a range of dynamic behaviors accessible to a continuum model of the cerebral cortex placed close to the anesthetic phase transition. If the anesthetic transition from the high-firing (conscious) to the low-firing (comatose) state can be modeled as a jump between two equilibrium states of the cortex, then we can draw an analogy with the vapor-to-liquid phase transition of the van der Waals gas of classical thermodynamics. In this analogy, specific volume (inverse density) of the gas maps to cortical activity, with pressure and temperature being the analogs of anesthetic concentration and subcortical excitation. It is well known that at the thermodynamic critical point, large fluctuations in specific volume are observed; we find analogous critically-slowed fluctuations in cortical activity at its critical point. Unlike the van der Waals system, the cortical model can also exhibit nonequilibrium phase transitions in which the homogeneous equilibrium can destabilize in favor of slow global oscillations (Hopf temporal instability), stationary structures (Turing spatial instability), and chaotic spatiotemporal activity patterns (Hopf–Turing interactions). We comment on possible physiological and pathological interpretations for these dynamics. In particular, the turbulent state may correspond to the cortical slow oscillation between “up” and “down” states observed in nonREM sleep and clinical anesthesia.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Of course, the (specific volume) \(\equiv \) (firing rate) analogy is not perfect: the volume of a gas can increase without limit, but cortical firing rate is limited by biological constraints, implemented in the model by imposing a maximum firing rate \(Q_{e}^{\text{max}}\) (see Table 15.1).
 
Literature
1.
go back to reference Alkire, M.T., Hudetz, A.G., Tononi, G.: Consciousness and anesthesia. Science 322(5903), 876–880 (2008) Alkire, M.T., Hudetz, A.G., Tononi, G.: Consciousness and anesthesia. Science 322(5903), 876–880 (2008)
2.
go back to reference Bazhenov, M., Timofeev, I., Steriade, M., Sejnowski, T.J.: Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci. 22(19), 8691–8704 (2002) Bazhenov, M., Timofeev, I., Steriade, M., Sejnowski, T.J.: Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci. 22(19), 8691–8704 (2002)
3.
go back to reference Bennett, M.V., Zukin, R.S.: Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41, 495–511 (2004)CrossRef Bennett, M.V., Zukin, R.S.: Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41, 495–511 (2004)CrossRef
4.
go back to reference Cartwright, J.H.E.: Labyrinthine turing pattern formation in the cerebral cortex. J. Theor. Biol. 217(1), 97–103 (2002)CrossRefMathSciNet Cartwright, J.H.E.: Labyrinthine turing pattern formation in the cerebral cortex. J. Theor. Biol. 217(1), 97–103 (2002)CrossRefMathSciNet
5.
go back to reference Casali, A.G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K.R., Casarotto, S., Bruno, M.A., Laureys, S., Tononi, G., Massimini, M.: A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 5(198), 198ra105 (2013) Casali, A.G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K.R., Casarotto, S., Bruno, M.A., Laureys, S., Tononi, G., Massimini, M.: A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 5(198), 198ra105 (2013)
6.
go back to reference Dadok, V., Szeri, A.J., Sleigh, J.W.: A probabilistic framework for a physiological representation of dynamically evolving sleep state. J. Comput. Neurosci. (2013). doi:10.1007/s10827-013-0489-x Dadok, V., Szeri, A.J., Sleigh, J.W.: A probabilistic framework for a physiological representation of dynamically evolving sleep state. J. Comput. Neurosci. (2013). doi:10.1007/s10827-013-0489-x
7.
go back to reference Franks, N.P., Lieb, W.R.: Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–613 (1994)CrossRef Franks, N.P., Lieb, W.R.: Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–613 (1994)CrossRef
8.
go back to reference Friedman, E.B., Sun, Y., Moore, J.T., Hung, H.T., Meng, Q.C., Perera, P., Joiner, W.J., Thomas, S.A., Eckenhoff, R.G., Sehgal, A., Kelz, M.B.: A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS One 5(7), e11,903 (2010) Friedman, E.B., Sun, Y., Moore, J.T., Hung, H.T., Meng, Q.C., Perera, P., Joiner, W.J., Thomas, S.A., Eckenhoff, R.G., Sehgal, A., Kelz, M.B.: A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS One 5(7), e11,903 (2010)
9.
go back to reference Gajda, Z., Gyengesi, E., Hermesz, E., Ali, K.S., Szente, M.: Involvement of gap junctions in the manifestation and control of the duration of seizures in rats in vivo. Epilepsia 44(12), 1596–1600 (2003)CrossRef Gajda, Z., Gyengesi, E., Hermesz, E., Ali, K.S., Szente, M.: Involvement of gap junctions in the manifestation and control of the duration of seizures in rats in vivo. Epilepsia 44(12), 1596–1600 (2003)CrossRef
10.
go back to reference Guldenmund, P., Demertzi, A., Boveroux, P., Boly, M., Vanhaudenhuyse, A., Bruno, M.A., Gosseries, O., Noirhomme, Q., Brichant, J.F., Bonhomme, V., Laureys, S., Soddu, A.: Thalamus, brainstem and salience network connectivity changes during propofol-induced sedation and unconsciousness. Brain Connect 3(3), 273–285 (2013)CrossRef Guldenmund, P., Demertzi, A., Boveroux, P., Boly, M., Vanhaudenhuyse, A., Bruno, M.A., Gosseries, O., Noirhomme, Q., Brichant, J.F., Bonhomme, V., Laureys, S., Soddu, A.: Thalamus, brainstem and salience network connectivity changes during propofol-induced sedation and unconsciousness. Brain Connect 3(3), 273–285 (2013)CrossRef
11.
go back to reference Hutt, A., Longtin, A.: Effects of the anesthetic agent propofol on neural populations. Cog. Neurodyn. 4(1), 37–59 (2010)CrossRef Hutt, A., Longtin, A.: Effects of the anesthetic agent propofol on neural populations. Cog. Neurodyn. 4(1), 37–59 (2010)CrossRef
12.
go back to reference Jacobson, G.M., Voss, L.J., Melin, S.M., Mason, J.P., Cursons, R.T., Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W.: Connexin36 knockout mice display increased sensitivity to pentylenetetrazol-induced seizure-like behaviors. Brain Res. 1360, 198–204 (2010)CrossRef Jacobson, G.M., Voss, L.J., Melin, S.M., Mason, J.P., Cursons, R.T., Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W.: Connexin36 knockout mice display increased sensitivity to pentylenetetrazol-induced seizure-like behaviors. Brain Res. 1360, 198–204 (2010)CrossRef
13.
go back to reference Jahromi, S.S., Wentlandt, K., Piran, S., Carlen, P.L.: Anticonvulsant actions of gap junctional blockers in an in vitro seizure model. J. Neurophysiol. 88(4), 1893–1902 (2002) Jahromi, S.S., Wentlandt, K., Piran, S., Carlen, P.L.: Anticonvulsant actions of gap junctional blockers in an in vitro seizure model. J. Neurophysiol. 88(4), 1893–1902 (2002)
14.
go back to reference Kitamura, A., Marszalec, W., Yeh, J.Z., Narahashi, T.: Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons. J. Pharmacol. 304(1), 162–171 (2002) Kitamura, A., Marszalec, W., Yeh, J.Z., Narahashi, T.: Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons. J. Pharmacol. 304(1), 162–171 (2002)
15.
go back to reference Kramer, M.A., Kirsch, H.E., Szeri, A.J.: Pathological pattern formation and cortical propagation of epileptic seizures. J. R. Soc. Lond.: Interface 2, 113–207 (2005) Kramer, M.A., Kirsch, H.E., Szeri, A.J.: Pathological pattern formation and cortical propagation of epileptic seizures. J. R. Soc. Lond.: Interface 2, 113–207 (2005)
16.
go back to reference Kuizenga, K., Kalkman, C.J., Hennis, P.J.: Quantitative electroencephalographic analysis of the biphasic concentration–effect relationship of propofol in surgical patients during extradural analgesia. Br. J. Anaesth. 80, 725–732 (1998)CrossRef Kuizenga, K., Kalkman, C.J., Hennis, P.J.: Quantitative electroencephalographic analysis of the biphasic concentration–effect relationship of propofol in surgical patients during extradural analgesia. Br. J. Anaesth. 80, 725–732 (1998)CrossRef
17.
go back to reference Kuizenga, K., Wierda, J.M.K.H., Kalkman, C.J.: Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br. J. Anaesth. 86, 354–360 (2001)CrossRef Kuizenga, K., Wierda, J.M.K.H., Kalkman, C.J.: Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br. J. Anaesth. 86, 354–360 (2001)CrossRef
18.
go back to reference Lee, U., Ku, S., Noh, G., Baek, S., Choi, B., Mashour, G.A.: Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology 118(6), 1264–1275 (2013)CrossRef Lee, U., Ku, S., Noh, G., Baek, S., Choi, B., Mashour, G.A.: Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology 118(6), 1264–1275 (2013)CrossRef
19.
go back to reference Liley, D.T.J., Bojak, I.: Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. Clin. Neurophysiol. 22(5), 300–313 (2005) Liley, D.T.J., Bojak, I.: Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. Clin. Neurophysiol. 22(5), 300–313 (2005)
20.
go back to reference Murphy, M., Bruno, M.A., Riedner, B.A., Boveroux, P., Noirhomme, Q., Landsness, E.C., Brichant, J.F., Phillips, C., Massimini, M., Laureys, S., Tononi, G., Boly, M.: Propofol anesthesia and sleep: a high-density EEG study. Sleep 34(3), 283–291A (2011) Murphy, M., Bruno, M.A., Riedner, B.A., Boveroux, P., Noirhomme, Q., Landsness, E.C., Brichant, J.F., Phillips, C., Massimini, M., Laureys, S., Tononi, G., Boly, M.: Propofol anesthesia and sleep: a high-density EEG study. Sleep 34(3), 283–291A (2011)
21.
go back to reference Nilsen, K.E., Kelso, A.R., Cock, H.R.: Antiepileptic effect of gap-junction blockers in a rat model of refractory focal cortical epilepsy. Epilepsia 47(7), 1169–1175 (2006)CrossRef Nilsen, K.E., Kelso, A.R., Cock, H.R.: Antiepileptic effect of gap-junction blockers in a rat model of refractory focal cortical epilepsy. Epilepsia 47(7), 1169–1175 (2006)CrossRef
22.
go back to reference Robinson, P.A., Rennie, C.J., Wright, J.J.: Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E 56, 826–840 (1997)CrossRef Robinson, P.A., Rennie, C.J., Wright, J.J.: Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E 56, 826–840 (1997)CrossRef
23.
go back to reference Sears, F.W., Salinger, G.L.: Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, 3rd edn. Addison-Wesley, Reading (1975) Sears, F.W., Salinger, G.L.: Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, 3rd edn. Addison-Wesley, Reading (1975)
24.
go back to reference Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Clarendon Press, Oxford (1971) Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Clarendon Press, Oxford (1971)
25.
go back to reference Steriade, M., Nuñez, A., Amzica, F.: A novel slow (\(<\) 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993) Steriade, M., Nuñez, A., Amzica, F.: A novel slow (\(<\) 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993)
26.
go back to reference Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Liley, D.T.J.: Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Phys. Rev. E 60, 7299–7311 (1999)CrossRef Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Liley, D.T.J.: Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Phys. Rev. E 60, 7299–7311 (1999)CrossRef
27.
go back to reference Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Wilcocks, L.C.: Toward a theory of the general anesthetic-induced phase transition of the cerebral cortex: I. A statistical mechanics analogy. Phys. Rev. E 64, 011,917 (2001) Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Wilcocks, L.C.: Toward a theory of the general anesthetic-induced phase transition of the cerebral cortex: I. A statistical mechanics analogy. Phys. Rev. E 64, 011,917 (2001)
28.
go back to reference Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W.: Modelling general anaesthesia as a first-order phase transition in the cortex. Prog. Biophys. Mol. Biol. 85(2–3), 369–385 (2004)CrossRef Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W.: Modelling general anaesthesia as a first-order phase transition in the cortex. Prog. Biophys. Mol. Biol. 85(2–3), 369–385 (2004)CrossRef
29.
go back to reference Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., Sleigh, J.W.: Gap junctions mediate large-scale turing structures in a mean-field cortex driven by subcortical noise. Phys. Rev. E 76, 011,916 (2007) Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., Sleigh, J.W.: Gap junctions mediate large-scale turing structures in a mean-field cortex driven by subcortical noise. Phys. Rev. E 76, 011,916 (2007)
30.
go back to reference Steyn-Ross, D.A., Steyn-Ross, M.L., Wilson, M.T., Sleigh, J.W.: Phase transitions in single neurons and neural populations: Critical slowing, anesthesia, and sleep cycles. In: Steyn-Ross, D.A., Steyn-Ross, M.L. (eds.) Modeling Phase Transitions in the Brain. Springer Series in Computational Neuroscience, vol. 4, chap. 1, pp. 1–26. Springer, New York (2010) Steyn-Ross, D.A., Steyn-Ross, M.L., Wilson, M.T., Sleigh, J.W.: Phase transitions in single neurons and neural populations: Critical slowing, anesthesia, and sleep cycles. In: Steyn-Ross, D.A., Steyn-Ross, M.L. (eds.) Modeling Phase Transitions in the Brain. Springer Series in Computational Neuroscience, vol. 4, chap. 1, pp. 1–26. Springer, New York (2010)
31.
go back to reference Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W., Wilson, M.T.: Progress in modeling EEG effects of general anesthesia: Biphasic response and hysteresis. In: Hutt, A. (ed.) Sleep and Anesthesia: Neural Correlates in Theory and Experiment. Springer Series in Computational Neuroscience, vol. 15, chap. 8, pp. 167–194. Springer, New York (2011)CrossRef Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W., Wilson, M.T.: Progress in modeling EEG effects of general anesthesia: Biphasic response and hysteresis. In: Hutt, A. (ed.) Sleep and Anesthesia: Neural Correlates in Theory and Experiment. Springer Series in Computational Neuroscience, vol. 15, chap. 8, pp. 167–194. Springer, New York (2011)CrossRef
32.
go back to reference Voss, L.J., Jacobson, G., Sleigh, J.W., Steyn-Ross, D.A., Steyn-Ross, M.L.: Excitatory effects of gap junction blockers on cerebral cortex seizure-like activity in rats and mice. Epilepsia 50(8), 1971–1978 (2009)CrossRef Voss, L.J., Jacobson, G., Sleigh, J.W., Steyn-Ross, D.A., Steyn-Ross, M.L.: Excitatory effects of gap junction blockers on cerebral cortex seizure-like activity in rats and mice. Epilepsia 50(8), 1971–1978 (2009)CrossRef
33.
go back to reference Wentlandt, K., Samoilova, M., Carlen, P.L., El Beheiry, H.: General anesthetics inhibit gap junction communication in cultured organotypic hippocampal slices. Anesth. Analg. 102(6), 1692–1698 (2006)CrossRef Wentlandt, K., Samoilova, M., Carlen, P.L., El Beheiry, H.: General anesthetics inhibit gap junction communication in cultured organotypic hippocampal slices. Anesth. Analg. 102(6), 1692–1698 (2006)CrossRef
34.
go back to reference Wilson, M.T., Sleigh, J.W., Steyn-Ross, D.A., Steyn-Ross, M.L.: General anesthetic-induced seizures can be explained by a mean-field model of cortical dynamics. Anesthesiology 104, 588–593 (2006)CrossRef Wilson, M.T., Sleigh, J.W., Steyn-Ross, D.A., Steyn-Ross, M.L.: General anesthetic-induced seizures can be explained by a mean-field model of cortical dynamics. Anesthesiology 104, 588–593 (2006)CrossRef
35.
go back to reference Wozny, C., Williams, S.R.: Specificity of synaptic connectivity between layer 1 inhibitory interneurons and layer 2/3 pyramidal neurons in the rat neocortex. Cereb. Cortex 21(8), 1818–1826 (2011)CrossRef Wozny, C., Williams, S.R.: Specificity of synaptic connectivity between layer 1 inhibitory interneurons and layer 2/3 pyramidal neurons in the rat neocortex. Cereb. Cortex 21(8), 1818–1826 (2011)CrossRef
36.
go back to reference Yang, L., Ling, D.S.F.: Carbenoxolone modifies spontaneous inhibitory and excitatory synaptic transmission in rat somatosensory cortex. Neurosci. Lett. 416, 221–226 (2007)CrossRef Yang, L., Ling, D.S.F.: Carbenoxolone modifies spontaneous inhibitory and excitatory synaptic transmission in rat somatosensory cortex. Neurosci. Lett. 416, 221–226 (2007)CrossRef
Metadata
Title
Equilibrium and Nonequilibrium Phase Transitions in a Continuum Model of an Anesthetized Cortex
Authors
D. Alistair Steyn-Ross
Moira L. Steyn-Ross
Jamie W. Sleigh
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-54593-1_15

Premium Partner